
SERVICE BOOSTERS: LIBRARY OPERATING
SYSTEMS FOR THE DATACENTER

Henri Maxime Demoulin

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Boon Thau Loo and Linh Thi Xuan Phan
Professors of Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Commitee

Vincent Liu, Professor of Computer and Information Science, Chair
Andreas Haeberlen, Professor of Computer and Information Science
Jonathan M. Smith, Professor of Computer and Information Science
Irene Zhang, Principal Researcher, Microsoft Research



SERVICE BOOSTERS: LIBRARY OPERATING SYSTEMS FOR THE DATACEN-
TER

COPYRIGHT

2021

Henri Maxime Demoulin

This work is licensed under a Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International (CC BY-NC-SA 4.0) License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/


Acknowledgments

“Dissertations are not
finished; they are abandoned.”

—Fred Brooks

None of this would have been possible without the unconditional love of she who
was the first woman in my life. Thanks mom.

I cannot thank enough Linh Phan, Irene Zhang and Boon Loo for their support
throughout my five years at Penn. I am a stubborn person who always wants to do
things his way. My mentors had a hard time guiding me and without their patience
I would not have graduated. I am forever grateful to Boon for accepting me in the
program and giving me a chance to realize my dream. You have always had my back.

I have many people to thank at Penn and elsewhere. Vincent Liu is the most
genuine, kind and gentle person I have ever met — in addition of being wicked smart.
JMS has been a profound source of inspiration. When I think about Jonathan I think
about the depth of humanity’s quest for answers. We are very little things out there.
Andreas Haeberlen helped me a lot finding my way during my first years. Marios
Kogias taught me many things about systems research.

My friends at the Distributed Systems Laboratory have been very influential on
my development as a researcher. I first wanted to write ”X is very smart and helped
me become smarter”, but the fact is that all these individuals are insanely smart. So
let’s skip that part. Nikolaos Vasilakis, Joshua Fried and Isaac Pedisich have been
profoundly inspiring. Nikos is a great example of how deep ideas combined to long
lasting persistence can create breakthroughs. Our many conversations have changed
me. To Josh, I am grateful I “cultivated” our relationship. You are a living example
that one can be both a great computer scientist and a great human. Thanks for the
time spent together, aloe. Without Isaac Pedisich, there would not be any Service
Boosters. Out of everyone here, Issac is likely the one I harassed the most, night
and day, with computer-related stuff. Likewise Tavish Vaidya was instrumental in
my early research days.

Thanks to the great students I have been working with, Kelvin Ng, Jiali Xing
and Pratyush Patel. Thanks to all the undergraduate and masters students at DSL,
Chirag Shah, Robert DiMaiolo, Leon Wu, Ritika Gupta, Liana Patel, and Zachary
Zhao.

I want to thank members of the NetDB group, Haoxian Chen, Nofel Yaseen and
Nick Sultana. Qizhen Zhang has a special place in my heart. Thanks to the mem-
bers of the Tundra lab, Saeed Abedi, Robert Gifford, Neeraj Gandhi and Edo Roth.

iii



Interestingly Neeraj is one the most innocent and sweet person I met. The staff at
Penn has always been helpful. Thanks to Cheryl, Liz and Britton.

This journey started way before Penn. Thanks to Benjamin Lee, Bruce Maggs,
Jeffrey Chase, Theo Benson, Carlo Tomasi. Bruce trusted me and I will be forever
grateful. You are a true friend. Thanks Edwin for introducing my to Philly. Thanks
to my lifelong friends Aurelien, Benoit, Charles, Cyril, Cyprien, Fabienne, François
(fat4), Jeanne, Karine, Lucas. Thanks to my little brothers Gabriel and Jeremy.
Thanks Audrey. Thanks Julia and Iloa. Thanks Gilles and Marion for opening the
curtains of possibilities.

Finally, to my second most fervent supporter, Christina, кристулик , I love you.
You are bound to great things that, I guarantee you, are much more interesting than
being a doctor for computers.

iv



ABSTRACT

SERVICE BOOSTERS: LIBRARY OPERATING SYSTEMS FOR THE
DATACENTER

Henri Maxime Demoulin

Boon Thau Loo and Linh Thi Xuan Phan

Cloud applications are taking an increasingly important place our technology and

economic landscape. Consequently, they are subject to stringent performance require-

ments. High tail latency — percentiles at the tail of the response time distribution —

is a threat to these requirements. As little as 0.01% slow requests in one microservice

can significantly degrade performance for the entire application. The conventional

wisdom is that application-awareness is crucial to design optimized performance man-

agement systems, but comes at the cost of maneuverability. Consequently, existing

execution environments are often general-purpose and ignore important application

features such as the architecture of request processing pipelines or the type of re-

quests being served. These one-size-fits-all solutions are missing crucial information

to identify and remove sources of high tail latency.

This thesis aims to develop a lightweight execution environment exploiting ap-

plication semantics to optimize tail performance for cloud services. This system,

dubbed Service Boosters, is a library operating system exposing application struc-

ture and semantics to the underlying resource management stack. Using Service

Boosters, programmers use a generic programming model to build, declare and an-

notate their request processing pipeline, while performance engineers can program

advanced management strategies.
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Using Service Boosters, I present three systems, FineLame, Perséphone, and

DeDoS, that exploit application awareness to provide real time anomaly detection;

tail-tolerant RPC scheduling; and resource harvesting. FineLame leverages aware-

ness of the request processing pipeline to deploy monitoring and anomaly detection

probes. Using these, FineLame can detect abnormal requests in-flight whenever they

depart from the expected behavior and alerts other resource management modules.

Perséphone exploits an understanding of request types to dynamically allocate re-

sources to each type and forbid pathological head-of-line blocking from heavy-tailed

workloads, without the need for interrupts. Perséphone is a low overhead solution

well suited for microsecond scale workloads. Finally, DeDoS can identify overloaded

components and dynamically scale them, harvesting only the resources needed to

quench the overload.

Service Boosters is a powerful framework to handle tail latency in the datacen-

ter. Service Boosters clearly separates the roles of application development and per-

formance engineering, proposing a general purpose application programming model

while enabling the development of specialized resource management modules such as

Perséphone and DeDoS.
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CHAPTER 1

Introduction

In the past decade, cloud applications have changed from — relatively — simple
3-tiers architectures to large graphs of microservices. Though the microservice design
pattern enabled scaling engineering teams and building more complex applications,
it also exacerbated the problem of high tail latency [1] for these systems. Tail latency
arises when a small portion of the requests served by a machine are orders of mag-
nitude higher than median response times. In the context of microservices, because
end-users responses can depend on tens or hundreds of individual microservices, a
single straggler can have disproportionate impact on end-to-end performance.

Meanwhile, there has not been significant changes to the abstraction between
these cloud applications and the underlying hardware. Specifically, execution envi-
ronments hosting microservices, such as Apache webserver [2] or Node.js [3], usually
provide a coarse-grained thread pool design to handle incoming requests at a service,
encapsulating the entire request processing pipeline in a single thread. This design
essentially ignores application-level semantics and provide a one-size-fits all execu-
tion model to all requests. Unfortunately, taming high tail latency often relies on
some form of application-awareness, for instance understanding the load at applica-
tion queues [4, 5], observing requests’ runtime [6], or understanding applications’
state and data structures [7].

As we increasingly rely on cloud computing for high performance and predictable
services, we need to rethink the design assumptions that make cloud execution envi-
ronments oblivious of the application they host and instead transition toward well-
defined exposition of application semantics to the resource management layer. This
thesis argues that we should push the trend embraced by microservices a step further
and allow users to declare and annotate each service’s request processing pipeline.
With such declaration of application-level semantics, the execution environment can
implement advanced techniques for detecting and mitigating high tail latency. Build-
ing resource management techniques tailored to the application at hand typically
raises concerns with respect to violating the end-to-end argument [8] and increas-
ing costs of operation at scale. This thesis argues that finding novel solutions to
harmoniously re-think the end-to-end argument and optimizing existing systems is
much more viable economically and environmentally than pursuing with the existing
abstractions. The traditional answer to high tail latency is to enlist more physi-
cal resources. Past a certain scale, more hardware means more data centers. As
of 2020, there are an estimated 541 hyperscale data centers [9]. Building a new
data center is very costly: Google can spend up to 600 million dollars per data cen-
ter [10]. A price which pales in comparison to NSA’s 1.5 billion dollars Utah data
center [11]. In addition to being expensive to build, datacenters have currently a
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significant environmental footprint: in 2016 they represented 1.8% of the total USA
electric consumption [12] and in 2019 they were estimated to represent 1% of global
energy usage [13]. Perhaps worse, cooling data centers often rely on potable water
— even for leaders in data centers efficiency Microsoft and Google, more than 50% of
the total water consumed is potable — which usage can have negative consequence
on local habitats [14].

1.1. Contributions

This thesis introduces a library operating system (libOS) design for cloud services
named Service Boosters. Service Boosters proposes a generic programming model
to 1) expose application-semantics to the underlying execution environment and 2)
develop custom management techniques for high tail latency. Using Service Boosters,
users can declare their request processing pipeline as a graph of components and
annotate this graph with information to be used by specialized resource management
modules.

This thesis contributes three Service Boosters modules, FineLame,
Perséphone, and DeDoS, that tackle high tail latency from three different angles.
FineLame is a libOS module that exploits an understanding of the request pro-
cessing pipeline to provide real time anomaly detection and predict when requests
are likely to cause high tail latency. FineLame leverages recent advances in the
Linux kernel and generalizes well to many cloud applications, beyond Service Boost-
ers. Perséphone is a specialized resource management module leveraging the ability to
classify incoming requests to implement in user-space a new request scheduling policy
providing good tail latency for shorter requests in heavy-tailed workloads, without
relying on interrupts. Perséphone is well suited to high performance services process-
ing millions of RPCs per second. Finally, using knowledge of the request processing
pipeline and the resource demand of each stage, DeDoS is a specialized resource man-
agement module responsible for dynamically scaling overloaded stages but harvesting
only the necessary resources to mitigate tail latency.

1.2. Organization

The next chapter presents the design and components of Service Boosters. Chap-
ters 3 and 4 will present FineLame and Perséphone. DeDoS is discussed in chapter 5.
Finally chapter 6 proposes future work.
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CHAPTER 2

Service Boosters

Service Boosters’ first and foremost goal is to improve cloud services performance
and predictability. It accomplishes these goal by supporting advanced techniques
for detecting and mitigating high tail latency. Often, tail latency originates when
the resource management layer antagonizes the characteristics of the workload or the
request processing pipeline. Service Boosters provide a generic programming model
to capture application-level semantic from cloud services and expose them to the
resource management layer.

This chapter presents the overall design of Service Boosters (§2.1, 2.2), introduces
the Boosters contributed in this thesis (§2.3) and the anomaly detection module (§2.4),
the booster programming model (§2.5) and our prototype implementation (§2.6).

2.1. Overview

Service
Unit
(SU)

Control plane 
(e.g., Linux)

Data center 
network

 

 

Service Booster 

Computer

Staged 
Application

Other service

 

libOS modules

Fig. 2.1. Design of Service Boosters

Figure 2.1 presents the design of a Service Boosters runtime running alongside
a control plane. This runtime is made of three domains: the application domain

3



Handler Acceptable types Description

UDP Network Process UDP payloads
TCP Network Process TCP payloads
NVMe Storage Process NVMe commands

Tab. 1. Native event handlers provided by Service Boosters

built using fine-grained building blocks named Service Units, specialized resource
management modules named Boosters, and a set of libOS modules providing services
for Service Units and Boosters. Service Units are responsible for processing part or
entirety of incoming requests. Their goal is to be fine-grained and exhibit a well-
defined resource consumption pattern. Each Service Unit in the application domain
is a typed unit of work accepting a set of input event types. Programmers declare
event types and fill a Service Unit event handling template, then compose Service
Units together as a dataflow graph (DFG). Given a DFG declaration, the runtime
will compile it and map each layer to a Service Unit. Boosters are specialized Service
Units that take on resource management tasks. Boosters can operate inline with
the application, such as the request scheduling Booster Perséphone using the DARC
scheduling policy (chapter 4), or on the side of the pipeline, such as the resource
harvesting Booster, DeDoS (chapter 5). The Service Boosters environment offers a
library of modules, for example network and storage processing (Table 1), as well as
a lower level API to program advanced Service Unit and Boosters. In addition, the
runtime offers a monitoring subsystem and anomaly detection module (chapter 3)
to profile Service Units at runtime and identify requests about to contribute to tail
latency. These modules are services available to all Service Units and Boosters.

Finally, Service Boosters runtimes execute in a single process and runtimes can
be distributed across a cluster. Typical Service Boosters applications are key-value
stores, machine learning inference engines, search engines, statistic event processors,
web front ends, file servers, etc.

2.2. Service Units

Service Units are essentially annotated event handlers. They are responsible for
processing a set of event types from one or many input queue(s), which source can
be network cards, storage devices, or other Service Units. By default, a Service Unit
goes over input queues in a round robin fashion and dequeues events from a queue in a
FIFO fashion. If the Service Unit is programmed to generate a response, it routes the
message to the next stage in the DFG using a default least loaded queue dispatching
policy across instances of the target stage. Messages flowing through the DFG are
wrapped in a Service Boosters-specific protocol used for tracing and routing. Service
Units localize and pass a pointer to application payloads to their programmed event
handler. Figure 2.2 describes this sequence of actions.

The Service Unit programming interface is flexible, allowing programmers to break
down RPC handlers into multiple Service Units that can be scaled independently.

4



1 /∗ Round rob in through input queues ∗/

2 f o r input queue in input queues :

3 i f ( ! input queue . empty ( ) ) :

4 i tems = dequeue ( input queue , BATCH SIZE ) ;

5 f o r item in items :

6 /∗ Cal l a s s o c i a t e d event handler ∗/

7 re sponse = my handler ( item ) ;

8 /∗ Dispatch response ∗/

9 i f ( r e sponse ) :

10 r e sp type = c l a s s i f y ( re sponse ) ;

11 /∗ Conf igurab le rout ing p o l i c y ∗/

12 out queue = p i c k d e s t ( r e sp type ) ;

13 push ( out queue , re sponse ) ;

Fig. 2.2. Service Unit event loop.

This is particularly useful to harvest resources from other machines in the data cen-
ter, improving the service’s resilience to sudden overloads in a stage of the request
processing pipeline, and helping programmers identify bottlenecks. In addition, be-
cause Service Units embed application-level information, they enable the implemen-
tation of advanced load balancing techniques between stages of the pipeline. Finally,
Service Units are independent of the underlying threading model (e.g., N:M, 1:M).
Section 2.6 describes a Linux implementation.

Event handlers: We provide a C++ template to program Service Units’ event
handlers. They accept a pointer to a payload and can either return nothing, a pointer
to a response, or pass a response by copy. In addition, if a value is returned, it must
include the type of destination (i.e., which Service Unit should the runtime route the
response to). Programmers have access to standard C/C++ libraries, in addition to
a set of house-grown libraries (e.g., buffer pool).

Event queues: Declared at configuration time, the set of event types an Service
Unit accepts determines the set of queues it polls from. Network cards and storage
devices expose descriptor queues to be polled for incoming packets or completed
commands. Other Service Units expose memory queues in a one-to-one relationship
with each other (so a Service Unit might poll over n input queues corresponding to the
previous layer in the DFG, rather than a single one, to remove locking overheads from
the communication pattern). The Service Boosters framework exposes a programming
API to build custom event dequeuing policies.

Event routing: A Service Unit desiring to transmit messages to the next stage
in the pipeline must choose an instance of the stage. Each stage in the DFG can
be configured to use a specific dispatching policy. By default, Service Units uses a
Decentralized, first come first serve (d-FCFS) policy which immediately dispatches
messages to the least loaded instance of the target stage. The system also supports
centralized dispatching modes where messages are first pushed to one or many local
output buffer(s) at the Service Unit, then periodically dispatched. For example, we
support a Centralized first come first serve (c-FCFS) policy with which messages are
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dispatched to the next available target stage (in this mode, target stages have only in-
put queues of depth 1 for the originating event type), and Dynamic Application-aware
Reserved Cores (DARC, chapter 4), a policy classifying output event types through
user-defined request filters and reserving Service Units to short requests in order to
avoid head-of-line blocking. The Service Boosters framework exposes a programming
API to build custom routing policies. Request filters are part of this API.

Booster’s protocol: Requests entering the system are stored in memory buffers.
A private zone — a buffer’s headroom — is reserved for metadata: an internally
generated request ID and the event type, plus potential sub-types.

2.3. Boosters

Boosters are special Service Units performing application-aware, customized re-
source management. This thesis contributes two boosters: a resource harvesting
booster (DeDoS) and a request dispatching booster (Perséphone) .

Request Scheduling: A special Service Unit polling from NIC queues, classifying
requests using request filters, and dispatching requests to the first stage in the DFG.
This booster hosts a novel centralized scheduling policy, DARC, able to dedicate
Service Units to specific event sub-types based on their profiled resource consumption.
Fragmenting a DFG stage across event sub-types enables the separation of shorter
requests from longer requests and eliminates head-of-line blocking otherwise resulting
from mingling sub-types together. Chapter 4 describes this booster in details.

Resource harvesting: A special Service Unit responsible for scaling stages in the
DFG if they appear overloaded. This booster uses the native Service Boosters mon-
itoring subsystem to detect overloads at Service Units and periodically report load
statistics and overload alerts to an external controller aware of the load across all
Service Boosters nodes. When a Service Unit is overloaded the Booster attempts to
locally scale the Service Unit and signals the overload to the controller. If a local
solution was not found, the latter elects a machine where a new Service Unit can be
created to host the overloaded handler. The decision is made based on the bottleneck
resource exhibited by the overloaded handler. Chapter 5 describes this booster in
details.

2.4. Detection

Service Boosters ships an internal monitoring and anomaly detection subsystem,
FineLame [15], that keeps track of load and resource usage in two dimensions: Service
Units and requests. These metrics can then be used by Boosters to perform specific
tasks. For instance, the resource harvesting Booster uses Service Units input queuing
delay to infer overloads. The subsystem also allows Booster to subscribe to alerts and
be notified when a component or request goes rogue.

FineLame is made of three components: request mappers recording the request ID
a given Service Unit is running, resource monitors maintaining a resource consumption
profile for requests and Service Units, and an anomaly detection model to build a
fingerprint of legitimate resource consumption behaviors. This fingerprint is used by
resource monitors to detect in real time — in-flight — when a request or a Service
Unit presents a suspicious behavior. Chapter 3 describes this subsystem in details.
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2.5. API

In this section we discuss how to setup a Service Boosters application through
concrete examples. The system offers a YAML configuration interface to compose
DFGs and C++ templates for Service Units and boosters.

YAML:. The main section (“service units”) describes Service Units: which func-
tion template to instantiate, what initialization data to feed in for setup, which event
types to accept, which nodes in the DFG responses should be sent to and which dis-
patch policy to use for this task. Service Unit can also be specified dependencies, that
is other units that must be present on the same local runtime for correct execution.
The YAML file comprises other sections specific to the implementation and cluster
setup: for example, the monitoring subsystem can be wired to a database (MySQL
or Postgres) to record statistics.

C++ template: Listing 2.1 presents the event processing function of a Service
Unit used by programmers to write their service logic. Note that all messages flowing
through the system use pre-allocated memory buffers by default, so that no dynamic
memory allocation takes places for these messages, and the runtime can simply pass
pointers around. Programmers can dynamically allocate memory within a Service
Unit if they wish, but they are responsible for freeing it — potentially in another
Service Unit.

Listing 2.1. C++ Service Unit template

#inc lude < l i b o s / Serv i c eUn i t . hh>
int p r o c e s s e v en t (unsigned int event in ,

unsigned int event out ,
enum ∗ e v e n t o u t t a r g e t ) {

/∗ Cast e v e n t i n i n t o an expec ted type ∗/
/∗ Process the r e q u e s t ∗/
/∗ Reuse e v e n t i n ' s b u f f e r , or use a new one ∗/
/∗ Set up e v e n t o u t t a r g e t ∗/
return 0 ;

}

Boosters use the same template than Service Unit. Some boosters take actual
events (e.g., network request dispatching) while others don’t. The latter will be
called with a dummy payload they can safely ignore.

Other facilities: The API offers a buffer pool library to acquire pre-allocated
buffers, and other utilitarian libraries.

2.5.1. Example: REST service. The following describes a REST service made
of the following components: network stack, TLS, HTTP, XML parsing, file storage.
A typical requests enters the system through the network, gets deciphered and inter-
preted through the HTTP parser, then can either request a file or upload an XML
file. Finally, a HTTP response is generated and sent to the user.

Each of these component might be vulnerable to performance outliers, that is a
request could consume an unexpected amount of resources during the TLS, HTTP,

7



or XML stage. If our application was built from a single block, we would only be
able to scale the entire monolith and maybe not be able to harvest sufficient resources
to handle an entire new copy. With Service Boosters, we can instantiate a resource
harvesting Booster which job is to detect overloads at Service Units and trigger a
resource harvesting request. The Booster attempts to scale the overloaded unit locally
but otherwise coordinates with an external resource controller to solve the bottleneck.

1 # REST service YAML configuration

2 NETWORK: # This defines a "meta" input type

3 handler: tcp_handler

4 init_data: '1234' # Listening port

5 destinations: [TLS] # Next layer in the DFG

6 TLS:

7 handler: tls_handler # e.g., implemented through OpenSSL

8 sources: [NETWORK]

9 destinations: [HTTP, NETWORK]

10 dependencies: [network] # Needed for handshakes, etc.

11 HTTP:

12 handler: http_handler

13 sources: [TLS]

14 destinations: [XML, FILEIO, NETWORK]

15 replicas: 3

16 XML:

17 handler: xml_handler

18 sources: [HTTP]

19 destinations: [FILEIO, HTTP]

20 replicas: 2

21 FILEIO:

22 handler: fileio_handler

23 sources: [HTTP, XML]

24 destinations: [HTTP]

25 HARVEST: # Resource harvesting Booster

26 handler: resource_harvester

27 init_data: '192.168.0.10 6789' # Controller's location

2.5.2. Example: KVS. The following describes a simple key-value store ser-
vice. Requests enter the system though the network, and are then processed by a
KV Service Unit. Responses are directly emitted by these units to the NIC. In this
case, we rely on the network dispatching Booster to perform tail-tolerant scheduling
through DARC (§4). This policy takes the name of a request filter, a user-defined func-
tion, to classify incoming requests before dispatching them to workers (here named
“kvs filter”.

8



1 # KVS service YAML configuration

2 service_units:

3 NETWORK:

4 handler: psp_booster

5 init_data: '1234 DARC kvs_filter' # use DARC scheduling

6 destinations: [KV]

7 KV:

8 handler: kv_handler

9 sources: [NETWORK]

10 replicas: 8

2.5.3. Example: Feature Generation service. This service is a typical map
reduce example: a first layer of Service Unit extracts data from a file, performing
an initial round of computation over the words, then a reducer computes a TF-IDF
vector for each document in the dataset.

1 # Feature Generation service YAML configuration

2 service_units:

3 NETWORK:

4 handler: udp_handler

5 init_data: '1234'

6 destinations: [KV]

7 MAP:

8 handler: feature_extractor

9 sources: [NETWORK]

10 destinations: [REDUCE]

11 init_data: '/documents/storage/path'

12 REDUCE:

13 handler: feature_generator

14 sources: [MAP]

15 init_data: '/feature/storage/path'

2.6. Implementation

This section describes the implementation of Service Boosters over Linux. When
an application is divided into a large number of fine-grained Service Units, switching
from one Service Unit instance to another is a very frequent operation. In Linux,
entering the kernel every time is prohibitively expensive. Because of this, the system
privileges user level scheduling and context switching using a set of kernel threads
pinned to CPU cores. This approach has the additional advantage that it does not
require changes to the kernel.

Figure 2.3 presents the Linux implementation. A Service Boosters runtime over
Linux maintains a POSIX thread for each available CPU core scheduling Service
Units.

9
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Fig. 2.3. Linux implementation of Service Boosters. Pthreads are used as kernel
threads to run pools of Service Unit. Blocking units run on non-pinned CPU cores,
while non-blocking units run on pinned CPU cores.

On each core, Service Boosters instantiates a worker thread running a local sched-
uler. The scheduler polls message queues for each of the local Service Unit instances in
a round robin fashion — the default policy — and delivers new messages to the target
Service Unit, waiting for the Service Unit instance to finish processing it. Schedul-
ing is partitioned and non-preemptive — workers do not steal messages from other
workers and they do not interrupt Service Unit instances while they are processing
messages. Partitioned scheduling avoids inter-core coordination in the general case
and thus keeps context-switching fast. The Service Boosters framework exposes an
API to tune the policy used by workers to process Service Units, and program custom
policies (e.g., Earliest Deadline First — EDF).

The system uses two types of threads: pinned ones for non-blocking operations and
non pinned ones for blocking operations. The former allows the operator to schedule
Service Units without Linux’s scheduler interference. The latter allows Linux’s CFS
to preempt the thread. Pinning maximizes CPU utilization and reduces cache misses
that would otherwise occur if Service Units were migrated between cores. In more
detail, pinned threads run a scheduler that continuously (1) picks a Service Unit from
its pool, (2) executes it by dequeuing one or more item(s) from its data queue(s) and
invoking the associated event handler, and (3) repeats. Both Service Unit scheduling
and dequeuing messages from Service Units’ queues are configurable — round robin
by default.

In the current implementation, Service Units that have blocking operations (e.g.,
disk I/O) are assigned to their own non-pinned threads, such that they are scheduled
by the Linux kernel as generic kernel-level threads.

Each worker thread keeps statistics on resource usage of each of its Service Units
and global metrics such as their data queue lengths and number of page faults. The
current API allows programmers to implement custom metrics (e.g., frequency of
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access of a given URL in an HTTP Service Unit). Those statistic are then gathered
by the Service Boosters runtime to consolidate a single, local data store.

Finally, each worker thread periodically runs an update manager that processes
a special thread queue. Unlike the Service Unit data queues, the thread queue is
solely for control messages and is itself populated by the Service Boosters runtime. It
stores requested configuration changes such as creating and destroying Service Units.
In effect, the thread queue serves as a buffer of requested changes, and avoids the
overhead of locks and other consistency mechanisms that would otherwise be required
if the Service Boosters runtime directly manipulated worker threads’ data structures.

Each worker thread is responsible for routing output events to the next stage
in the DFG. To do so, they tap into a runtime-global routing table which contains
information about Service Unit types and implements customizable load balancing
policies and routing functions. The default policy is to route messages to the least
loaded Service Unit instance of the destination type, enforcing instance affinity to
related packets that requires a state (e.g., from the same flow or user session).

2.7. Support for existing applications

Service Boosters aims at improving applications’ resilience from the very beginning
of their development process. Consequently, the focus of this thesis is on enabling
new applications using the Service Unit programming model. Nevertheless, section 5.4
provides a proof of concept by splitting an existing user-level TCP stack into Service
Units and supports that Service Boosters do not require applications to be written
from scratch in order to benefit from its mechanisms. Since Service Boosters does not
require the entire software to be partitioned, rewriting existing code can start small
by only carving out the most vulnerable component while the rest of the application
runs as a single Service Unit.

Finally, note that is possible to — partially or fully — automate the partitioning.
Some domain-specific languages are already written in a structured manner that
lends itself naturally to this approach. For instance, a declarative networking [16]
application can be compiled to an Service Units graph that consists of database
relational operators and operators for data transfer across machines (see §5.4). Recent
work on programmable switches has shown how to automatically split P4 applications
into a chain of subprograms [17]. Work in the OS community [18] has shown that
even very complex software, such as the Linux kernel, can be split in a semi-automated
fashion.

2.8. Takeaways

Service Boosters enables programmers to declare and annotate the structure of
their request processing pipeline. The system offers a declarative interface to be
parsed by resource management modules. The subsequent chapters detail techniques
exploiting this information to detect and mitigate high tail latency.
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CHAPTER 3

FineLame

A common source for high tail latency are requests consuming an unexpected
amount of resources and blocking subsequent, well-behaved requests from processing.
Such event can happen when requests take an infrequent execution path, hit the
worst case complexity of an algorithm, or are issued from malicious senders. In the
latter case, these attacks contain carefully-crafted, pathological payloads that target
algorithmic, semantic, or implementation characteristics of the application’s internals.
Because they can be low-volume, we refer to these attacks as Asymmetric Denial-of-
Service (ADoS) attacks.

The first step toward taming high tail latency is the ability to quickly detect such
requests. Network-based detection techniques are generally ineffective against such
requests because they lack identifiable problematic patterns at the network level. To
be successful, network tools would not only need to perform deep packet inspection,
but would also need to be able to predict which requests will hog resources a priori—a
challenge akin to solving the halting problem.

Similarly, existing application-level detection techniques are limited in their effi-
cacy: since these requests can consume arbitrary resources at arbitrary components
in the service, which may be written in different programming languages and contain
multiple binary third-party packages whose source code is not available or with com-
plex dependencies, manual instrumentation of the application is prohibitively difficult,
expensive, and time-consuming.

This chapter presents the design and implementation of a request monitoring and
anomaly detection module for Service Boosters, FineLame (Fin-Lahm), that can
predict when requests are likely to increase the tail latency of the service. FineLame
only requires an understanding of the request processing pipeline, which, in the con-
text of Service Boosters, can be obtained by parsing the application’s DFG. In the
general case, users only need to annotate their own code to mark the start and end
of request processing; in many cases, annotations are not even required as applica-
tions lend themselves naturally to this demarcation. Our interaction with Apache
Web Server1 and Node.js2 versions, for example, involves tracing three and seven
functions, respectively, and not a single modification in their source code.

Using entry and exit points in the request processing pipeline, FineLame au-
tomatically tracks CPU, memory, storage, and networking usage across the entire
application (even during execution of third-party compiled binaries). It does so with
low overhead and at an ultra-fine granularity, which allows us to detect divergent
requests before they leave the system and before they start contributing to the tail.

12.4.38
2v12.0.0-pre, 4a6ec3bd05e2e2d3f121e0d3dea281a6ef7fa32a on the master branch
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Generalizing our approach beyond Service Boosters is a recent Linux feature called
extended Berkeley Packet Filter (eBPF). eBPF enables the injection of verified pieces
of code at designated points in the operating system (OS) and/or application, regard-
less of the specific programming language used. By interposing not only on key OS
services, such as the network stack, the scheduler, but also user-level services such as
memory management facilities, FineLame can detect abnormal behavior in a unified
fashion across the entire software stack at run time.

FineLame consists of three synergistic components that operate at the user/k-
ernel interface. The first component allows attaching application-level interposition
probes to key functions responsible for processing requests. These probes are based
on inputs from the application developers, and they are responsible for bridging the
gap between application-layer semantics (e.g., HTTP requests) to its underlying op-
erating system carrier (e.g., process IDs). Examples of locations where those probes
are attached include event handlers in a thread pool. The second component attaches
resource monitors to user or kernel-space data sources. Examples of such sources in-
clude the scheduler, TCP functions responsible for sending and receiving packets on a
connection, and the memory manager used by the application. To perform anomaly
detection, a third component deploys a semi-supervised learning model to construct
a pattern of normal requests from the gathered data. The model is trained in the
user space, and its parameters are shared with the resource monitors throughout the
system, so that anomaly detection can be performed in-line with resource allocation.

By allowing developers to set probe points, FineLame effectively channels critical
semantic information from development time to deployment and runtime. The system
also enables a clear decomposition of roles between application programmers and
performance engineers responsible for positioning probes. In the context of this thesis,
FineLame effectively enables a principled transfer of application-level semantic to
the execution environment.

Our evaluation shows that FineLame requires low additional instrumentation
overhead, requiring between 4-11% additional overhead for instrumenting web appli-
cations ranging from Apache, Node.js, and Service Boosters. Moreover, when evalu-
ated against real application-layer attacks such as ReDOS [19], Billion Laughs [20],
and SlowLoris [21], FineLame is able to detect the presence of these attacks in near
real-time with high accuracy, based on their deviation from normal behavior, and
before they contribute to the tail latency of the system.

3.1. Motivation

We begin by showing via an example server-side application the operation of an
ADoS attack and how it increases tail latency, the limitations of current detection
mechanisms, and design goals for our system.

3.1.1. Background on ADoS attacks. Denial-of-service (DoS) attacks have
evolved from simple flooding to pernicious asymmetric attacks that intensify the
attacker’s strength by exploiting asymmetries in protocols [22, 23, 24]. Unlike
traditional flooding attacks, adversaries that perform asymmetric DoS (ADoS) are
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Fig. 3.1. Billion Laughs (XML Bomb) Attack. Under a normal load of about
500 requests per second, legitimate users experience a median of 6.75ms latency.
After a short period of time, we start a malicious load of 10 requests per second
(shaded area). XML bombs can take up to 200ms to compute (vs. a median of
about 60ns for normal input). As a results, legitimate requests get serviced much
slower, experiencing up to 2s latency. Setup details covered in (§3.3).

typically small in scale compared to the target victims. These attacks are increas-
ingly problematic; the SANS Institute described “targeted, application-specific at-
tacks” [22] as the most damaging form of DoS attack, with an average of four attacks
per year, per survey respondent. Such attacks typically involve clients launching at-
tacks that consume the computational resources or memory on servers. Types of
asymmetric DoS vary, and are often targeted at a specific protocol. ADoS vulner-
abilities are widespread and often affect entire software ecosystems [25]. They are
representative of difficult situations that contribute to high tail latency in cloud ser-
vices. We detail a few of them below.

Regular-expression DoS (ReDoS) [26, 27, 28]. ReDoS attacks target programs
that use regular expressions. Attackers craft patterns that result in worst-case asymp-
totic behavior of a matching algorithm. An example pattern is (a+)+, which does not
match any string of the form a*X, but requires the system to check 2N decomposition
of the pattern to reach that conclusion, where N is the length of the target string.

XML Bomb [20]. An XML bomb (or Billion-Laughs attack) is a malicious XML
document that contains layers of recursive data definitions3, resulting in quadratic
resource consumption: a 10-line XML document can easily expand to a multi-gigabyte
memory representation and consume an inordinate amount of CPU time and memory
on the server. Fig. 3.1 illustrates the impact of XML bombs on the latency of requests
on a susceptible server. Under normal operation, a load of 500 legitimate requests
per second are served in less than 10 milliseconds each; under a low-volume attack
of 10 XML bombs per second, the latency jumps up to more than two seconds. An
XML bomb affects any serialization format that can encode references (e.g., YAML,
but not JSON).

3For example, the first layer consists of 10 elements of the second layer, each of which consists of 10
elements of the third layer, and so on.
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Improper (de-)serialization [29, 30, 31]. This class of attacks encompasses those
where malicious code can be injected into running services. These vulnerabilities are,
unfortunately, common in practice, and they allow malicious users to, for instance,
inject a for (;;) {} loop to stall a process indefinitely.

Event-handler Poisoning (EHP) [32]. Attacks like the preceding can be addition-
ally amplified in an event-driven framework. In event-handler poisoning, attackers
exploit the blocking properties of event-driven frameworks so that, when a request un-
fairly dominates the time spent by an event handler, other clients are further blocked
from proceeding. Any slowdown, whether it is in the service itself or in its recursive
layers of third-party libraries can contribute to this head-of-line blocking.

3.1.2. Design Goals. The attacks in the previous section highlight several goals
that drive FineLame’s design (§3.2) and implementation (§3.2.4).

In-flight Detection. Actions often need to be taken while requests are “in the work”
— for example, when requests are actively contributing to increasing the tail latency
of the system. Detection needs to catch such requests before they leave the system,
by monitoring resource consumption at a very fine temporal and spatial granularity.

Resource Independence. Requests contributing to high tail latency may target
arbitrary system-level resources (CPU, memory, storage, or networking), and may
even target multiple resources. A desirable solution needs to be agnostic to the
resource and able to handle any instance of inordinate consumption.

Cross-component Tracking. Given the complex structure of modern cloud ap-
plications, requests contributing to the tail of the latency distribution can also cross
component boundaries and consume resources across several microservices on the
execution path.

Language Independence. Applications today combine several ready-made libraries,
which are written in multiple programming languages and often available only as com-
piled binaries. In addition, different microservices in the application graph could be
written in different programming languages. Thus, detection should remain agnostic
to the application details such as the programming language, language runtime, and
broader ecosystem (e.g., packages, modules).

Minimal Developer Effort. Detection needs to impose minimal burden to devel-
opers, while allowing performance engineers to design mitigation techniques without
having to study application internals. Rather than presenting developers with an
overabundance of configuration knobs, the detection system should direct precious
human labor at sprinkling applications with key semantic information utilized at
runtime.

3.1.3. Assumptions. To be more concrete, FineLame assumes the following
about requests causing high tail latency and the broader environment.

Workloads. We consider that consumers of the application (i) can send arbitrary
requests to a service hosting a vulnerable application, and (ii) is aware of the appli-
cation’s structure and vulnerabilities, including exploits in its dependency tree. We
do not distinguish between legitimate and malicious clients who intersperse harmful
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Fig. 3.2. FineLame overview. Key elements: (1, right) user and kernel data-
collection probes at points where an HTTP request interacts with resource allo-
cation; (2, mid-left) a data structure shared between user and kernel space, that
aggregates and arranges collected data; (3, left) a userspace training component that
instantiates model parameters, fed back to the probes. Information flow between
1–3 is bidirectional.

requests that attack resources with one or more benign requests. Specifically, any
subset of hosts can send any number of requests that may or may not attack any
subset of resources. The goal of FineLame is to detect any requests that is about to
contribute to increasing tail latency.

We do not limit resources of interest to CPU; requests can abuse memory, file
descriptors, or any other limited resource in the host system. That means that a
single client can attempt to consume 100% of the CPU indefinitely, or multiple clients
can abuse many of the system’s resources.

Environment. We assume (i) vulnerable but not actively malicious code, and (ii)
that FineLame sees at least some benign traffic. If all traffic abuse resources from the
beginning, in-flight detection and mitigation become less urgent, as anomalies become
the norm, and the application owners should first revise their deployment pipeline.
We also assume that the resource utilization of request processing can be attributed
to a single request by the end of each processing phase, even if the processing phases
is split into multiple phases across different application components. As keeping a
reference to the originating request is a natural design pattern, in all of the services
we tested, a unique identifier was already available; in cases where there is no such
identifier, one must be added, and we detail how to do so in section 3.2.

3.2. FineLame Design

Figure 3.2 depicts the overall design of FineLame. Conceptually, FineLame
consists of three main components:

• Programmer annotations that mark when a request is being processed. FineLame
requires only a few annotations, even for complex applications, to properly
attribute resource utilization to requests.
• Fine-grained resource monitors that track the resource utilization of in-flight

requests at the granularity of context switches, mallocs, page faults.
• A cross-layer anomaly detection model that learns the legitimate behavior

and detects attacks as soon as they deviate from such behavior.
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Programmers can use FineLame by annotating their application with what we
call request-mappers. These annotations delineate, for each component and processing
phase, the start and end of processing, as well as the request to which resource
utilization should be attributed. For example, in an event-driven framework, the
beginning and the end of each iteration of the event handler loop should be marked
as the start and the end of a request’s processing, respectively.

At runtime, when FineLame is installed on the host environment, FineLame
attaches small, low-overhead resource monitors to particular points in the application
or operating system. The aforementioned request-mappers enable FineLame to de-
termine the request to which the resource consumed by a thread or process should be
credited. In section 3.2.4, we detail our out-of-the-box FineLame library of request-
mappers and resource monitors for several popular cloud frameworks. Our library
tracks the utilization of a range of key OS-level resources; however, programmers
can further extend it with user-level resource monitors to track application-specific
resources (e.g., the occupancy of a hash table).

Finally, FineLame’s monitoring data is used to perform lightweight, inline anom-
aly detection. Resource monitors first feed data to a machine learning model training
framework that computes a fingerprint of well-behaved behavior. Parameters of the
trained model are installed directly into the resource monitors, which evaluate an
approximation of the model to automatically detect anomalous behavior on-the-fly.
The end result of FineLame is a high-accuracy, fine-grained and general detection
engine for requests about to increase tail latency.

3.2.1. Request-mapping in FineLame. Conceptually, there are three opera-
tions in request mapping:

• startProcessing(): This annotation denotes the start of a processing phase.
Any resource utilization or allocations after this point are attributed to a new
unique request.
• attributeRequest(reqId): As soon as we can determine a unique and

consistent request identifier, we map the current processing phase to that
request. For instance, when reading packets from a queue, if the best con-
sistent identifier for a packet is its 5-tuple, resource tracking would start as
soon as the packet is dequeued, but would only be attributed to a consis-
tent request ID after Layer-3 and Layer-4 processing are completed. In gen-
eral, attributeRequest(reqId) is called directly after startProcessing()
and depending on the specific of the application, the two can sometimes be
merged (§ 3.2.4).
• endProcessing(): Finally, this operation denotes the completion of process-

ing, indicating that subsequent utilization should not be attributed to the
current request.

In order for the resource monitors to properly attribute utilization to a request,
FineLame requires programmers to annotate their applications using the above three
request mapping operations. Ideally, the annotations should cover as much of the code
base as possible; however, not all resource utilization can be attributed to a single
request. In such cases, programmers have flexibility in how they perform mapping: for
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true application overhead—rather than request processing overhead—utilization can
remain unattributed, and for shared overhead (e.g., garbage collection), utilization
can be partitioned or otherwise assigned stochastically.

Every request is given an identifier that must be both unique and consistent across
application components and processing phases. This identifier is used to maintain an
internal mapping between OS entity (process or thread) and the request. Example
identifiers include the address of the object representing the request in the application,
a request ID generated by some application-level tracing solution [33, 34, 35, 36,
37, 38, 39], or a location in memory if the request is only processed once. From the
moment a startProcessing annotation is called to the moment the endProcessing

annotation is called, FineLame will associate all the resources consumed by the OS
entity to the request.

An optimization of this technique can be implemented when the application lends
itself naturally to such mapping between OS entity and request. For instance, event-
driven frameworks or thread-pool based services usually have a single or small num-
ber of entry points for the request, to which FineLame can readily attach request-
mappers via eBPF without source code modification. We found this optimization
to be the common case, and FineLame does not require any modification to the
application we explore in section 3.3.

3.2.2. Resource monitoring in FineLame. Resource tracking between
startProcessing and endProcessing annotations are done via a recent Linux kernel
feature called eBPF. We first provide some background on the operation of eBPF, and
then discuss how we utilize it to perform extremely fine-grained resource monitoring
of in-flight requests.

3.2.2.1. Background on eBPF. The original Berkeley Packet Filter (BPF) [40] has
been a long-time component of the Linux kernel networking subsystem. It is a virtual
machine interpreting a simple language traditionally used for filtering data generated
by kernel events. Notable use cases are network packets parsing with Tcpdump [41]
and filtering access to system calls in the seccomp facility. In version 3.0 a just-in-time
compiler was implemented, allowing for a considerable speedup of the processing of
BPF programs by optimizing them on the fly.

In version 3.15, Alexei Starovoivtov significantly extended BPF (dubbing the new
system “eBPF”). The new version has access to more registers and an instruction
set mimicking a native RISC ISA, can call a restricted subset of kernel functions,
and can share data from kernel-space to user-space through hash-like data structures.
While eBPF is a low-level language, users can write programs in higher languages
such as C (and even Python with the BCC project [42]) and generate eBPF code
with compilers such as GCC and LLVM.

Generated programs are verified before being accepted in the kernel. The verifier
imposes a set of strict constraints to eBPF programs to guarantee the safety of the
kernel. Common constraints include the absence of floating point instructions, a limit
of 4096 instructions per program, a stack size capped at 512 Bytes, no signed division,
and the interdiction of back-edges in the program’s control flow graph (i.e., no loops).
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Name Description Event Type

tcp idle time TCP inactivity tcp cleanup rbuf kernel probe
tcp sent TCP Bytes sent tcp sendmsg kernel probe
tcp rcvd TCP Bytes received tcp cleanup rbuf kernel probe
cputime CPU time consumed scheduler tick, finish task switch kernel probe
malloc memory malloc bytes glibc malloc user probe
page faults Page faults events exceptions:page fault user kernel tracepoint

Tab. 1. Default FineLame resource monitors.

The ability of eBPF programs to be attached to both kernel and user-space func-
tions and events, their extremely low overhead, and their ability to share data with
user space without the need for any IPC or queuing mechanism make eBPF a prime
candidate for implementing our resource monitors.

3.2.2.2. Resource Monitor Architecture. FineLame’s resource monitors are at-
tached to various user- and kernel-space data sources (e.g., the scheduler or TCP
stack) and use the mapping described in section 3.2.1 to associate resource consump-
tion to application-level workflow (e.g., HTTP requests). A resource monitor requires
the following information: the type and name of the data source, and potentially the
path of its binary.

Our current prototype of Service Boosters uses the features listed in Table 1.
When executed, most resource monitors operate under the following sequence of ac-
tions: i) verify whether a request mapping is active for the current PID and exit if
not; ii) collect the metric of interest (usually through the arguments of the function
triggering it) and store it, time-stamped, in a shared data structure; and iii) per-
form anomaly detection on the request if the model’s parameters are available (see
section 3.2.3).

The time a request spends executing instructions on a processor is represented by
cputime. We instrument both the scheduler tick() and the finish task switch() kernel
functions, which are called at every timer interrupt and context switch, respectively,
to either start a timer when a thread executing a registered request is scheduled for
execution or collect the amount of CPU time consumed by the task swapped out. We
instrument the tcp sendmsg() and tcp rcleanbuf() to collect tcp sent and tcp rcvd, the
amounts of bytes sent and read from a TCP connection, respectively. To compute
tcp idle time, which represents the period of inactivity from the sender on a TCP con-
nection, we measure the time elapsed between two occurrences of tcp cleanup rbuf().
To monitor the heap memory consumption occasioned by the processing of a request,
we monitor the glibc malloc function. Applications where memory management is
partly handled by the runtime (such as in Python) can be monitored in a similar fash-
ion. Likewise, the model can be generalized to garbage collected languages. Finally,
we monitor the page fault events in the application by attaching a resource monitor
to the exception: page fault user kernel tracepoint. We observed in our evaluation
that cputime was the best discriminant for CPU based attacks, while tcp idle time
the best for slow attacks (such as Slowloris and RUDY).
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The above default, general-purpose resource monitors are sufficient for a large set
of existing applications; however, it can be extended to all the kernel events available
for tracing and probing, as well as user-level functions (to monitor application-level
metrics). If any application-level metrics are required (such as data structure occu-
pancy, counters, and so on), programmers can augment our resource monitors with
custom eBPF programs attached to arbitrary probe points in either kernel- or user-
space.

3.2.3. Detection in FineLame. Detection algorithm. For fast detection,
FineLame is designed to enable anomaly detection as close as possible to the resource
allocation mechanism. Without a method for in-flight anomaly detection in addition
to mechanisms for in-flight resource tracing, detection and mitigation of in-flight
requests would not be possible.

This detection problem can be reduced to quantizing the abnormality of a vec-
tor in n-dimensional space. Once a sufficient amount of data has been gathered to
compute a fingerprint of the legitimate requests’ behavior, we can train an anomaly
detection model. The model can span all the metrics collected by the resource mon-
itors, allowing us to detect abuse on any of the resources of the system as well as
cross-resource (multi-vector) attacks.

For the unsupervised version of this problem, the most popular methods take
one of two approaches: distance-based or prediction-based. The former family of
models aims to cluster known, legitimate data points and compute the distance of
new data points to those clusters—distance that is used to quantify the anomaly. The
latter family assumes the existence of a set of input data points that are correct, and
learns a function representing those points. When a new point enters the system, the
model computes the value of the learned function; the prediction error is then used
to quantify the degree of anomaly.

Because of the training complexity, prediction complexity, and required training
data, many existing solutions in both distance-based and prediction-based categories
are impractical to execute at fine granularity. For instance, the popular algorithm
DBSCAN [43] is not suitable for our purpose, as it requires us to evaluate the dis-
tance of new data points to all the possible “core” data points in the model. The
amount of data points considered (and therefore the size of the model) is usually
linearly proportional to the size of the training set. Some accurate approximations of
DBSCAN have been proposed [44], but even with a small number of clusters, almost
all of the training dataset still needs to be part of the model. Likewise, the perfor-
mance of prediction-based models made on neural networks, such as Kitsune [45], is
highly dependent on the depth and width of the model. The amount of parameters
of such networks grows exponentially with the number and size of the hidden layers.

Given the above concerns, we chose to implement anomaly detection in FineLame
with k-means, a technique that allows us to summarize the fingerprint of legitimate
requests with a small amount of data. In k-means, the objective function seeks to
minimize the distance between points in each cluster. The model parameters are then
the centroids and distribution of the trained clusters. In a typical use-case scenario,
FineLame is configured to perform only request monitoring for a certain amount of
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Required data
structures

Is there a
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Update request
profile

If anomaly
detection

parameters are
available, scale

and standardize
the data in the

FPA space

Update distance
to clusters

Perform anomaly
detection

FPAS # FPA scaling factor

pid_to_rid # OS carrier to request

req_points # Request profiles

model_params # K-means parameters

dp_dists # Distances to centroids

thresholds # Alerts cut -off bar

fun resource monitor(context ):

pid = bpf_get_current_pid ()

rid = pid_to_rid.get(pid)

if (rid):

ts = get_timestamp ()

metric = context.get_arguments ()

dp = req_points.get(rid)

if (dp):

dp.update(metric , ts)

else:

dp = init_dp(rid , metric , ts)

req_points.insert(dp)

µ, σ = model_params.get()

if (µ && σ):

metric_scaled = metric << FPAS

metric_scaled -= µ

if metric_scaled < 0:

metric_scaled *= -1

metric_scaled /= σ

metric_scaled *= -1

else:

metric_scaled /= σ

min_dist , closest_k

#pragma loop unroll

for k in K:

current_dist =

dp_dists.get(dp, k)

new_dist =

metric_scaled+current_dist

dp_dists.update(dp, new_dist)

if (new_dist < min_dist ):

min_dist = new_dist

closest_k = k

t = thresholds.get(closest_k)

if new_dist > t:

report(rid , dp , s)

Fig. 3.3. FineLame anomaly detection. Pseudocode for Service Boosters ’s
inline anomaly detection.
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time, after which it trains k-means on the monitoring data gathered in user-space
from the resource monitors shared maps. In practice, we found that a k value equal
to the number of request types in the application yields a reasonable estimation of the
different behaviors adopted by legitimate requests, while being a number low enough
such as to contain FineLame’s overhead.
Model training and deployment. Gathering the training data is done by a simple
look-up from the user-space agent to the shared eBPF maps holding the requests
resource consumption data. Using those profiles, the user-space agent standardizes
the data (center to 0 and cast to unit standard deviation). Subsequently, the agent
trains k-means to generate a set of centroids representing the fingerprint of well-
behaved traffic. The parameters of the model, to be shared with the performance
monitors, are then the cluster centroids, as well as the mean µ and standard deviation
σ of each feature in the dataset, and a threshold value τ statistically determined for
each cluster.

As described above, the performance monitors have limited computing abilities
and do not have access to floating point instructions. Thus, they are designed to per-
form fixed point arithmetic in a configurable shifted space, and require ’s to shift the
model parameters in this space before sharing them. Using two precision parameters
a and b, each datapoint is transposed in a higher space 10a, and normalized such that
the resulting value lies in an intermediate space 10a−b, retaining a precision of a − b
digits. This means that during the normalization operation each parameter value x

undergoes the following transformation: x = (x ∗ 10a) − (µ ∗ 10a)
σ ∗ 10b

.
Once standardized, the clusters’ centroids as well as each feature’s mean and

standard deviation are shared with the resource monitors through eBPF maps. Upon
availability of those parameters, the resource monitors update not only the resource
consumption of existing requests, but also their outlier scores, a measure we use to
quantify the degree of anomaly of a request. Due to the constraints imposed on eBPF
programs—specifically, taking a square root is complex as we do not have access to
loops—we choose the normalized L1 distance to the closest cluster as the outlier
score. While being a crude measure, the L1 is equivalent to more complex norms
as resource vectors are of finite dimension. It preserves information about which
resource is abused, and it lets us set statistical thresholds to determine cut-off points
used for flagging abnormal requests. The algorithm for this entire process is shown
in Figure 3.3.

Finally, we note that because FineLame is primarily designed toward the de-
tection of requests contributing to high tail latency, we allow the anomaly detection
engine to maintain signed values for outlier scores. This means that requests that
have not reached their expected legitimate amounts of resource consumption, and
that would look abnormal in an absolute value setting, are not flagged as such. This
is important because it highlights the fact that FineLame is not geared toward vol-
umetric DoS attacks that aim to bring the system down with a vast amount of low
consumption requests.

3.2.4. Use Cases and Implementation. To demonstrate the generality of
FineLame and the minimal developer effort required to use it, we apply FineLame
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Application Request mapping probes SLOC

Apache 5 41
Node.js 9 64
DeDoS 2 21

Tab. 2. Intrusiveness of FineLame, quantified.

to three web platforms: Apache [2], which is estimated to serve ∼40% of all ac-
tive webpages; Node.js [3] a popular server-side JavaScript-based web server; and
Service Boosters. Our prototype of FineLame is available on https://github.

com/maxdml/Finelame. Table 2 quantifies the programming effort required to write
request-mappers for those three applications to use FineLame.

Apache web server. Primarily written in C, Apache’s request processing is imple-
mented by Multi-Processing Modules (MPM). In the latest versions of Apache (2.x),
requests are served by multiple processes which can have multiple worker threads
themselves; each thread handles one connection at a time.

When a request enters the system, an application-level (conn) object is created
by the core create conn function to contain it before the request is dispatched to a
worker thread. Subsequently, the request is processed by either the
ap process http sync connection or the ap process http async connection func-
tions, which take the conn object as argument. From FineLame, we attach one
request-mapper to core create conn, and two requests-mappers to the HTTP pro-
cessing functions, one over a uprobe called upon entering the function, the other over
a uretprobe called when returning from it. We exploit the conn object to generate
a unique identifier for each request and map it to the underlying thread worker, so
that resource monitors can later gather resource consumption data on the request’s
behalf. The mapping is undone when the function returns and the request exits the
system. When a worker thread executes a new request, the request-mapper updates
the mapping with the new request’s ID. This solution requires no modification to the
Apache source code, and 41 lines of eBPF code over 5 probes.

Node.js required more slightly more instrumentation due to its asynchronous model,
which offloads work to a worker pool (implemented with libuv [46]). The instrumen-
tation required eBPF probes to be attached to seven user-space functions within the
libuv library. As in Apache, we found a data structure — struct uv stream t —
that could (i) be used to generate a unique identifier, and (ii) was carried consistently
across the disparate components of the framework.

Request-mappers were applied to the seven libuv functions as follows:

• uv accept: a new request is initialized, and is associated with the uv stream t

structure that handled communication with the client.
• uv read and uv write: the request associated with the client’s stream is

assigned to the current thread for the duration of the function.
• uv work submit: the request assigned to the current thread is associated

with a work-request submitted to the worker pool.
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• uv fs work, and uv fs done: the request associated with the work-request
is assigned to the current (worker) thread.
• uv async send: the request is unassigned from the current thread.

Again, this solution requires no changes in Node.js source code, only knowledge
of which functions are processing requests. The request-mappers summed up to 64
lines of eBPF code.

Service Boosters is, by design, the canonical use case for FineLame. Applications
declare Service Units in their DFG and the framework provides an application-layer
protocol that FineLame can use to attach request mappers to each Service Unit
entry point.

3.3. Evaluation

In this section, we present our evaluation results of FineLame. Our evaluation
use ADoS attacks and is centered around the following aspects of the system:

• Overhead. The overhead of FineLame compared to no monitoring, or
in-application instrumentation
• Accuracy. The ability of FineLame to accurately detect requests about to

contribute to high tail latency and never seen yet by the application

3.3.1. Experimental setup. We present the setup on which we evaluate both
the overhead and accuracy aspects of FineLame. In all cases, the server applications
are running on a 12 cores Xeon Silver 4114 at 2.20GHz , while our legitimate and
attack clients are running on an Intel Xeon E5-2630L v3 at 1.80GHz. Both server and
client machines have a total of 62G of RAM, and have hyper-threading and DVFS
disabled.

We use version 2.4.38 of Apache, and configure it to use 50 worker threads. We
use version 12.0.0− pre of Node.js with the default configuration of 4 worker threads
for libuv. Both Apache and Node.js are configured to serve a set of Wikipedia [47]
pages. Node.js parses a regular expression provided in the request’s URI to find the
path of the file to serve. It’s parser, liburi, is vulnerable to the ReDoS attack. All
the applications impose a timeout of 20 seconds on connections. We deploy a sim-
ple webserver in Service Boosters which can process three types of requests: serve a
Wikipedia article, process a randomly generated XML file uploaded in a POST re-
quest, and parse a regular expression. The server is decomposed into several software
components: socket reading, HTTP parsing, file serving, XML parsing, regular ex-
pression parsing, and response writing. The XML parser is implemented with libxml2,
which is vulnerable to the Billion Laughs attack.

Our good traffic is generated by Tsung [48] and explores evenly all the servers’
exposed endpoints; bad traffic is generated by an in-house C client for the ReDoS and
Billion Laughs attacks, and pylorys [49] for the Slowloris attack. Tsung generates
load under an exponential distribution centered on a configurable mean, while our
attack client is configured to send a fixed load.

3.3.2. Overhead of FineLame. Figures 3.4, 3.5, and 3.6 presents the overheads
incurred by FineLame’s instrumentation on Apache, Node.js and Service Boosters.
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Fig. 3.4. FineLame overheads with Service Boosters

In all of our experimental setups, we evaluate the legitimate client latency experienced
when the server is not instrumented, when it is instrumented by FineLame, and when
FineLame’s resource monitors are also performing anomaly detection (FineLame
+). The load is as described earlier in sec 3.3.1, and explore all the instrumented
paths in the applications. We also evaluate the cost of instrumenting the Service
Boosters framework itself to evaluate FineLame overheads compared to a traditional
user-space solution. The bars plot the median of the clients latency, and all our
experiments are run thrice for a period of 100 seconds. In the case of Node.js the
instrumentation cost adds 8.55% overheads and adding anomaly detection 9.21%. In
the case of Apache, FineLame adds 11.38% and 11.72% overheads respectively. In
the case of Service Boosters, the baseline latency is higher than with the two previous
services, due to the fact that the application is not only serving files but also parsing
POST requests, and also the framework is less optimized than the two battle-tested
Apache and Node.js. Instrumenting directly the framework comes with an overhead of
2.9%, while FineLame comes with 4.23% overheads, 6.3% if also performing anomaly
detection.

In general we observe that the overheads incurred by FineLame are higher when
the baseline processing time of the service is low, and does not grow linearly with
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Fig. 3.5. FineLame overheads with Apache

the complexity of the application. In addition, we found that performing anomaly
detection in addition to monitoring resource consumption almost comes for free.

3.3.3. Performance of FineLame. Our performance evaluation of FineLame
is centered around its ability to detect requests about to contribute to high tail latency
before they do so, in this case detect attacks requests before they exit the system,
while providing accuracy competitive with non-approximated user-level algorithms.

3.3.3.1. Attacks. Our experiments aim to quantify the impact of attacks on quality
of service. Consequently, we tune attacks strength such that they will not bring down
the server but rather degrade the quality of service provided to legitimate users.

ReDoS: This attack consist of specially crafted regular expressions which are sent
to the server for processing. The strength of the attack grows exponentially with the
number of malicious characters present in the expression. Because the application
processing units are busy handling those requests, legitimate requests get queued for
a longer period of time, and ends-up being responded to more slowly.

Billion Laughs: The attack consists of XML files filled with several levels of nested
entities. The parsing cost is exponentially proportional to the depth of the document.
The impact is similar to the ReDoS attack.
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Fig. 3.6. FineLame overheads with Node.js

SlowLoris: The attack consists in maintaining open connections to the server, keep-
ing them alive by sending individual HTTP headers at a regular interval smaller than
the server’s timeout, but never completing the request—we assume that the attacker
is able to probe the service and discover this timeout. As a result, the server’s con-
nection pool gets exhausted, and it can’t answer new requests. This technique can
also implement a dormant attack which cripples the ability of the server to handle
surges of legitimate traffic, by denying a fraction of the total connection pool.

3.3.3.2. Anomaly Detection Performance. Evaluation metrics As is common
with anomaly detectors, the output of FineLame is a score which quantifies the
abnormality of a request. This score is then either used as a raw metric for mitigation
algorithms, or compared against a threshold τ to be transformed into a binary variable
where 0 means negative (no anomaly), and 1 means positive (attack). With τ set,
and using our knowledge of the ground truth, we can determine the accuracy of each
of the detector’s outputs as true/false positive/negative. The choice of τ is crucial,
as too low a value can result in a large amount of false positive, while too high a
value can induce a large amount of false negative. For our experiments, we set τ to
be the outermost point for each cluster in the training set, i.e., the most consuming
legitimate request we’ve seen so far for the cluster. The challenge associated with
deriving a large τ from the training traffic is that attacks can now take longer to
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detect—and might not be detected at all if they are too weak. This latter case does
not concern us, because to bring down the system with weaker attacks, an attacker
would be forced to change its method from asymmetric to volumetric. The benefit
of a higher τ is that it helps decreasing the False Positive Rate (FPR, FP

FP+TN
), a

desirable behavior for operators using the system. For our experiments, we present
the True Positive Rate (TPR, TP

TP+FN
), True Negative Rate (TNR, TN

TN+FP
) and F1

( 2TP
2TP+FP+FN

). TPR evaluates the system’s ability to detect all the attack requests.
TNR evaluates its ability to evaluate legitimate requests as such. The F1 score is
the harmonic mean of the TPR and the recall. It evaluates both the TPR and the
precision of the system.

In addition to its post-hoc instrumentation abilities and low programmer burden,
the main contribution of FineLame is it’s detection pace. We evaluate the Detection
Speedup (DS) of the system, which we define as being the delta between the time of
last detection and the time to first detection, over the lifetime of the request. We
expect DS to increase as users set more strict thresholds (lower values of τ), but found
that even with τ set to the outermost point in each training cluster, FineLame is
able to detect attacks up to more than 97% faster.

Experiments All our experiments are run for a duration of 400 seconds, split into 3
phases. The first phase sees only legitimate traffic flowing through our target appli-
cations, and last 200 seconds. FineLame is configured to only have the performance
monitors gather data for the first 180 seconds, after which point it triggers the train-
ing of the anomaly detection model and share its parameters. Attacks start at time
200, and last for 150 seconds. A final period of 50 seconds sees the attack stop,
and only good traffic is sent to the application. We perform two CPU exhaustion
attacks, Billion Laughs and ReDoS, as well as a connection pool exhaustion attack,
SlowLoris. For all experiments, we compare the TPR and TNR of FineLame to a
non approximated user-space implementation of k-means (that is, with floating point
arithmetic) to confirm that the system is competitive with more complex user space
solutions. We set k = 3, the maximum number of request types that the application
we setup can accept, and use a = 10 and b = 6 factor to retain 4 digits in fixed point
arithmetic.

Tables 3 and 4 present the detection speed and performance of FineLame.

Attack Strength TPR TNR

FL KM L2 FL KM L2

ReDoS
28.7× 100% 100% 99.995% 99.999%
57× 100% 100% 99.993% 99.994%
113.7× 100% 100% 99.997% 99.999%

Billion Laughs
4.7× 100% 100% 100% 100%
34.8× 100% 100% 99.998% 99.998%

SlowLoris 5 sockets 100% 100% 100% 100%

Tab. 3. FineLame TPR and TNR for Apache, Node.js and Service Boosters.

28



Attack Strength F1 DS

FL KM L2 median 75th max

ReDoS
28.7× 99.88% 99.98% 80.9% 81.2% 83.2%
57× 99.81% 99.83% 90.4% 90.5% 91.0%
113.7× 99.29% 99.76% 90.9% 95.1% 95.3%

Billion Laughs
4.7× 100% 100% 83.1% 85.5% 87.7%
34.8× 99.53% 99.76% 97.0% 97.1% 98.2%

SlowLoris 5 sockets 100% 100% 75% n/a n/a

Tab. 4. FineLame F1 and detection Speedup for Apache, Node.js and Service Boosters.

ReDoS: In our first experiment, we attack Node.js with three strengths of ReDoS
requests. In the two first experiments, the workload is made of 98% of benign requests
and 2% of malicious regular expressions blocking the event loop of the server (about
500 and 10 r/s, respectively). In the third experiment, with the strongest attack, we
reduce the attack rate to 1 r/s, such that the attack does not bring down the server.
Legitimate requests are served in about 0.8ms on average under normal conditions,
but get delayed in proportion of the intensity of the ReDoS requests when the attack
starts. During the first attack, bad requests are served in 23ms on average, a 28.75×
increase compared to normal requests. Good requests are also penalized and are
served in about 4ms. During the second attack, bad requests are served in 45.6ms on
average, a 57× increase compared to normal requests. Legitimate requests are affected
and incur an average latency of 13.5ms. During the third attack, bad requests are
served in 90.9ms on average, a 113.6× increase. Legitimate requests incur an average
latency of 6ms. Due to its ability to credit requests’ resource consumption at the
granularity of context switches, in both experiments, FineLame is able to detect
attack requests before they exist the system, at least 80.9% earlier for 50% of the
bad traffic, and up to 95.3% earlier. The user-space, non-approximated evaluation of
k-means using the L2 norm for measuring distances, perform only marginally better.

Billion Laughs: In this experiment, we attack Service Boosters with two different
strengths of Billion Laughs (XML bomb) requests. The good traffic follows a diurnal
pattern, oscillating between 250 and 750 requests per second. Under normal condi-
tions, legitimate requests are served in 6.87ms on average. In the first experiment, we
send 15 malicious requests per seconds (about 2% of the peak legitimate traffic, and
6% of the lower phase), which are served in 29.28ms on average, a 4.26× increase in
response time. In the second experiment, we decrease the number of bad requests to
one per second (about 0.1% and 0.4% of the peak and low traffic, respectively), and
increase their intensity such that they are served in 203ms in average (an order of
magnitude increase compared to the first case), which represents a 29.55× increase
in load compared to legitimate requests in normal conditions. For the weaker attack,
FineLame is able to detect malicious requests 78.83% faster than the user-space
solution, at least 50% of the time, and up to and 97% faster for the strongest attack.
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SlowLoris: In this experiment, we configure Apache to handle requests with 25
worker threads, and timeout on reading HTTP headers after 20 seconds. We con-
figure the attack client to maintain 5 connections to the server opened at all times,
refreshing it every 5 seconds. Effectively, this drives the tcp idle time of the malicious
request high and makes them standout from the legitimate ones. This attack is “all
or nothing”, in the sense that it will not impact the legitimate requests until the con-
nection pool gets exhausted. FineLame’s is able to detect the abnormal idle time
about 75% faster than the application (1− 5

20
∗ 100), which would have otherwise to

experience the timeout before reporting the request.

3.4. Related work

Performance monitoring Magpie [50] instruments an application to collect events
from the entire stack and obtain request profiles post-mortem. X-trace [51] is a
tracing framework that preserves causal relationship between events, and allow the
offline reconstruction of request trees. X-ray [52] builds on taint-tracking to provide
record and replay system to summarize the performance of application events offline.
FineLame’s allows us to perform anomaly detection while the request is still in
the system and consequently supports advanced resource harvesting and scheduling
techniques for Service Boosters. Retro [53] provides a tracing architecture for multi-
tenant systems that enables the implementation of resource management policies. It
focuses on performance degradation caused by competing workloads, rather than the
detection of degradation within a single application.

Programmer Annotations Prior work proposes an annotation toolkit that pro-
grammers can use in their code to specify resource consumption requirements [54]
and detect connections that violate the provided specification (and then attempts to
mitigate by rate limiting or dropping them). Service Boosters decouples the skills
required to break down a request processing pipeline — owned by programmers —
from the skills required to understand resource management techniques — owned by
performance engineers.

Volumetric Attack Detection There is a large body of work addressing volu-
metric DoS attacks [55, 56, 57, 58, 59, 60, 61], including attacks that target
the network [62, 63, 64]. As described earlier (§3), these systems do not protect
against asymmetric DoS attacks, a concern shared by both industry [65, 66] and
academia [27, 28, 32].

Application-based Detection Prior works on application-layer DoS detection ei-
ther depend heavily on repeated outliers, or are often deeply tied to a specific appli-
cation. Techniques include comparing the entropy of offending and legitimate traffic
[67, 68], sampling traffic flows [69], and sketch-based feature-dimensionality reduc-
tion [70]. While these techniques work well for volumetric attacks, they have self-
assumed limitations when the attack traffic is low—the primary focus of this paper.

DSHIELD [71] is a system that assigns “suspicion scores” to user sessions based
on their distance from legitimate session. While similar in nature to FineLame’s
anomaly detection technique, it relies on the operator knowing all the possible classes
of requests that the server can process. FineLame anomaly detection engine learns
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on legitimate requests so that it does not depend on a priori knowledge of execution
paths or vulnerabilities.

BreakApp [72] is a module-level compartmentalization system that attempts to
defend against DoS attacks, among other threats stemming from third-party modules.
While BreakApp’s capabilities increase with more and smaller modules, FineLame
works even with monolithic applications entirely developed as a single module.

BreakApp’s mitigation uses simple queue metrics (i.e., queue length at the module
boundary vs. replica budget), whose cut-off parameters are statically provided by the
programmer; FineLame uses a more advanced learning model, which parameters are
adjusted at runtime.

Rampart [73] focuses on asymmetric application-level CPU attacks in the context
of PHP. It estimates the distribution of a PHP application function’s CPU consump-
tion, and periodically evaluates running requests to assess the likelihood they are ma-
licious. It then builds filters to probabilistically drop offenders—repeated offenders
increase their probability of being filtered out. While FineLame profiles legitimate
requests resource consumption, it is not limited to CPU-based attacks. It also works
with applications with components built with many different languages.

In-kernel Detection Recent work has shown good results for mitigating ADoS at-
tacks by exploiting low level system metrics. Radmin [74] and its successor Cogo [75]
train Probabilistic Finite Automatas (PFAs) offline for each resource of a process
they want to monitor, then perform anomaly detection by evaluating how likely the
process’ transition in the resource space is. Training the PFAs requires days in Rad-
min, and minutes in Cogo, while FineLame can train accurate models in seconds
or hundreds of microseconds. We expect this capability to be helpful in production
systems where the model has to be updated, e.g., to account for changes in an appli-
cation’s component. In addition, Cogo reports detection time in the order of seconds,
while FineLame’s inline detection operates at the scale of the request’s complexity—
milliseconds in our experiments. Lastly, Radmin/Cogo operate at the granularity of
processes/connections. FineLame assumes a worst-case threat model where mali-
cious requests are sent sporadically by compromised clients, and thus operate at this
granularity. Per-request detection has the added benefit to enable precise root cause
analysis, further enhancing the practicality of FineLame.

Prevention-as-a-Service A recent vein of work proposed “Attack prevention as a
Service”, where security appliances are automatically provisioned at strategic loca-
tions in the network [76, 77]. Those techniques are largely dependent on attack
detection (to which they do not provide a solution), and thus are orthogonal to our
platform, which operates directly at the victim’s endpoint.

3.5. Takeaways

FineLame demonstrate how a selected subset of application-level semantic, here
an understanding of the critical stages of the request processing pipeline, can support
advanced techniques for detecting the source of high tail latency. Service Boosters
is designed to expose the request processing pipeline and make it easy to deploy
FineLame at scale. Specifically, Service Boosters allows the decomposition of roles

31



between programmers who declare their DFG and can provide request mappers, per-
formance engineers who write request monitors, and machine learning experts who
can build and train anomaly detection models.

In the next chapter of this thesis, we present Perséphone, another Service Boosters
module that, leveraging annotations in the DFG, can improve tail latency for high-
performance applications operating at the microsecond scale. Perséphone classifies
incoming requests and adaptively allocate them resources with the goal of avoiding
head-of-line blocking from slower requests contributing to high tail latency.
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CHAPTER 4

Perséphone

Data center networks and in-memory systems increasingly have (single) microsec-
ond [78] latencies. These latencies are critical for today’s complex cloud applications
to meet SLOs while fanning out to hundreds of datacenter backend servers [79, 80].
At microsecond-scale, the distribution of request processing times can be especially
extreme; for example, Redis can process GET/PUT requests in 2µs [81] but more
complex SCAN and EVAL requests can take hundreds of microseconds or milliseconds
to complete. As a result, a single long-running request can block hundreds or thou-
sands of shorter requests. For example, the total load time of a Facebook timeline
or an Amazon purchase page depends on hundreds of small, parallel requests being
fanned-out from a web front-end to backend services [80, 79].

To bound tail latency, especially for short requests, modern datacenter servers run
at low utilization to keep queues short and reduce the likelihood that a short request
will block behind long requests. For instance, Google reports that machines spend
most of their time in the 10-50% utilization range [82]. Unfortunately, this approach
wastes precious CPU cycles and does not guarantee that microsecond datacenter
systems will always meet SLOs for short requests.

In recent years, the community has increasingly relied on bypassing the kernel’s
network and storage stack to eliminate many sources of long tail latency [83, 84, 81,
4]. Though recent kernel-bypass schedulers have improved utilization with shared
queues [85] and work-stealing [86, 87], these techniques only work for uniform and
lightly-tailed workloads. For workloads with a wide distribution of response times,
Shinjuku [88] leverages interrupts for processor sharing; however, Shinjuku’s inter-
rupts impose non-negligible delays for single digit microsecond requests and are too
expensive to run frequently (i.e., our experiments saw ≈2us per interrupt and pre-
empting as frequently as every 5µs had a high penalty on sustainable load). Fur-
thermore, Shinjuku’s non-standard use of hardware virtualization features makes it
difficult to use in the datacenter [85] and public clouds, e.g., Google Cloud, Microsoft
Azure, AWS, etc..

Recent congestion control schemes [89, 90], similarly, optimize network utilization
and reduce flow completion times by implementing Shortest-Remaining-Processing-
Time (SRPT), which is optimal for minimizing the average waiting time. Unlike
CPU scheduling, though, switch packet schedulers have a physical ‘preemption’ unit
which is the MTU in the worst case, they process packet headers that include the
actual message size, and leverage traffic classes that can prioritize packets based on
the size of the flow they belong to, which makes scheduling decisions and policy
enforcement easier. A CPU scheduler cannot know in advance for how long each
request will occupy the CPU and there is no upper limit on execution time, which
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makes the implementation of SRPT-like policies, or generally policies that prioritize
short requests hard to implement at the microsecond scale.

The unifying factor between congestion control schemes, such as Homa [90] and
CPU schedulers, such as Shinjuku, that deal with heavy-tail flow and request dis-
tributions, respectively, is that they both temporarily multiplex the shared resource.
This chapter takes a different approach to CPU scheduling for heavy-tailed service
time distributions by taking advantage of parallelism and the abundance of cores
on a modern multicore server through application-aware [7] spatial isolation of CPU
resources.

First, we observe that using the Service Boosters architecture, a kernel bypass
scheduler can easily identify the type of incoming requests because users can anno-
tated the application’s DFG and classify them at ingress. For many cloud appli-
cations, the messaging protocol exposes the required mechanisms to declare request
types: Memcached request types are part of the protocol’s header [91]; Redis uses a
serialization protocol specifying commands [92]; Protobuf defines Message Types [93];
Next, we observe that requests of the same type often have similar processing types,
so, given the ability to identify types, we can track past processing times for each type
to predict future processing times. Finally, we carefully leave cores idle to prevent
short requests from queuing behind indefinitely longer ones.

Inspired by prior research in networking [94], our approach goes against the grain
for OS schedulers, which commonly prioritize work-conservation. We show that by
making a minor sacrifice in the maximum achievable throughput, we can increase the
achievable throughput under an aggressive latency SLO and as a result increase the
overall CPU utilization of the datacenter.

To implement this approach, we need to tackle two challenges: (1) predict how
long each request type will occupy a CPU and (2) efficiently partition CPU resources
among types while retaining the ability to handle bursts of arrivals and minimizing
CPU waste. To this end, Service Boosters ships Perséphone, a new application aware,
kernel-bypass scheduler. Perséphone lets applications define request filters and uses
these filters to dynamically profile the workload. Using these profiles, Perséphone
implements a new scheduling policy, Dynamic, Application-aware Reserved Cores
(DARC) that uses work conservation for short requests only and is not work conserv-
ing for long requests. DARC prioritizes short requests at a small cost in throughput
– 5% in our experiments – and is best suited for applications that value microsecond
requests. For other applications, existing kernel-bypass scheduler work well, though
we believe there is a large set of datacenter workloads that can benefit from DARC.

We prototype Perséphone using DPDK and compare it to two state-of-the-art
kernel-bypass schedulers: Shinjuku [88] and Shenango [87]. Using a diverse set of
workloads, we show that Perséphone with DARC can drastically improve requests
tail latency and sustain up to 2.3x and 1.3x more load than Shenango and Shinjuku,
respectively, at a target SLO. In addition, these improvements come at a lower cost
to long requests than Shinjuku’s preemption technique, highlighting the challenges of
traditional OS scheduling techniques at microsecond scale.

34



Tab. 1. Unlike most existing kernel-bypass OS schedulers, DARC is not work con-
serving. It extracts request types from incoming requests, estimates how long a
request will occupy a CPU before scheduling it and reserves workers for short re-
quests to minimize dispersion-based head-of-line blocking.

Policy
Exploit
typed
queues

Non
Work conserving

Non
preemptive

Example System

d-FCFS 7 3 3
IX [4]
Arrakis [81]

c-FCFS 7 7 3
ZygOS [86]
Shenango [87]

TS 3 7 7 Shinjuku [88]

DARC 3 3 3 Perséphone

4.1. The case for idling

For workloads with wide service time distribution, long requests can block short
requests even when queues are short because long requests can easily occupy all work-
ers for a long time. We refer to this effect as dispersion-based head-of-line blocking.
To better understand how dispersion-based blocking affects short requests, we look
beyond request latency and study slowdown: the ratio of total time spent at the
server over the time spent doing pure application processing [95].

Slowdown better reflects the impact of long requests on short requests. For heavy-
tailed workloads, short requests experience a slowdown proportional to the length of
the tail. More concretely, consider the following workload, similar to Zygos’ “bimodal-
2” [86], a mix of 99.5% short requests running for 0.5µs and 0.5% long requests
executing in 500µs. A short request blocked behind a long one can experience a
slowdown of up to 1001, while a long request blocked behind a short request will see
a slowdown of 1.001. As a result, a few short requests blocked by long requests will
drive the slowdown distribution and increase tail latency.

Using this workload, we simulate four scheduling policies, including DARC, listed
in Table 1. Decentralized first come, first served (d-FCFS) models Receive Side Scal-
ing, widely used in the datacenter today [96, 97] and by the seminal IX operating
system [4]. With d-FCFS, each worker has a local queue and receives an even share
of all incoming traffic. Centralized first come, first served (c-FCFS) uses a single
queue to receive all requests and send them to idle workers. c-FCFS is usually used
at the application level — for example, web servers (e.g., NGINX) often use a single
dispatch thread — and captures recent research on kernel-bypass systems [86, 87],
which simulate c-FCFS with per-worker queues and work stealing. Time Sharing
(TS) is used in the Shinjuku system [88], with multiple queues for different request
types and interrupts at the microsecond scale using Dune [98]. We simulate TS with
a 5µs preemption frequency and 1µs overhead per preemption, matching Shinjuku’s
reported ≈ 2000 cycles overhead on a 2GHz machine.
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Fig. 4.1. Simulated achievable throughput as a function of 99.9th percentile slow-
down for the policies listed in Table 1 on a 16 cores system and a workload composed
of 99.5% short requests (0.5µs) and 0.5% long requests (500µs). For a target SLO
of 10 times the average service time for each request type, c-FCFS and TS can only
handle 2.1 and 3.7 Millions requests per second (Mrps), respectively. DARC can
sustain 5.1 Mrps for the same objective. The Y axis represents the total achievable
throughput for the entire workload.

Figure 4.1 shows our simulation results assuming an ideal system with no net-
work overheads. We use 16 workers, simulate 1 second of requests distributed under
Poisson, and report the observed slowdown for the 99.9th percentile of each type of
requests — so as to capture the impact of the 0.5% long requests on the tail — at
varying utilizations, up to a maximum of 5.3 million requests per second (Mrps).

d-FCFS performs poorly; it offers an uncontrolled form of non work conservation
where workers sit idle while requests wait in other queues. Additionally, d-FCFS has
no sense of request types: workers might process a long request ahead of a short one
if it arrived first. c-FCFS performs better because it is work conserving but short
requests will block when all workers are busy processing long requests. To meet a
target SLO of 10x slowdown for each type of requests, c-FCFS must run the server at
2.1 Mrps, 40% of the peak load. Shinjuku’s TS policy fares better than c-FCFS and
d-FCFS, being both work conserving and able to preempt long requests: it maintains
slowdown bellow 10 up to 3.7 Mrps, 70% of the peak load. However, this simulation
accounts for an optimistic 1µs preemption overhead and overlooks the practicality of
supporting preemption at the microsecond scale (Cf. §4.5).

The DARC approach: Our key insight is that prioritizing short requests is critical
to protect their service time, an observation the networking community has already
made when designing datacenter congestion control schemes [89, 90, 94]. However,
using traffic classes and bounded buffers is challenging for CPU scheduling since
schedulers do not know how long a request may occupy a CPU and preemption is
unaffordable at single-digit microsecond scales. We observe that leaving certain cores
idle for readily handling potential future (bursts of) short requests is highly beneficial
at microsecond scale. For a request that takes 1 µs or less, even preempting as
frequently as every 5µs introduces a 6x slowdown. Instead, given an understanding of
each request’s potential processing time, a request type aware, not work conserving
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policy can reduce slowdown for short requests by estimating their CPU demand and
dedicating workers to them. These workers will be idle when short requests do not
arrive, but when they do, these requests are guaranteed to not be blocked behind
long requests.

As seen in Figure 4.1, DARC can meet the 10x slowdown SLO target for both
type of requests at 5.1 Mrps. This represents 2.5x and 1.4x more sustainable through-
put than c-FCFS and Shinjuku’s preemption policy. At this load, short requests
experience 9.87µs p99.9th tail latency, 3 and 1 orders of magnitude smaller than
c-FCFS and TS with 7738µs and 161µs, respectively. To achieve this, DARC asks
programmers for a request filter to identify types, estimates their CPU demand, and
reserves 1 worker for short requests at a small penalty of 5% achievable throughput.
Counter-intuitively, although DARC wastes cycles idling, it reduces the overall num-
ber of machines needed to serve a workload because servers can run at much higher
utilization while retaining good tail latencies for short and long requests.

4.2. DARC scheduling

The objective of DARC is to improve tail latency for single-digit microsecond
requests in cloud workloads without preemption. Like recent networking techniques
that co-design the network protocol and switches priority queue management [89, 90,
94] to favor small messages, we protect short requests at backend servers by extracting
their type, understanding their CPU demand, and dedicating enough resources to
satisfy their demand.

In this section, we describe the challenges associated with implementing these
techniques as a CPU scheduling policy, then present the DARC scheduling model, how
to compute reservations and when to update them. Table 2 describes the notation
used throughout this section.

Challenges. Protecting short requests in a dynamic way through priority queues
and non work conservation is difficult because we need to (1) predict how long each
request type will occupy a CPU and (2) partition CPU resources among types while
retaining the ability to handle bursts of arrivals and minimizing CPU waste.

The first challenge stems from the granularity of operation DARC is targeting,
microsecond scales, and from the need to react to changes in workload. We tackle
this challenge with a combination of low-overheads workload profiling and queuing
delay monitoring, using the former to build a fingerprint of requests’ CPU demand
and the latter as a signal that this fingerprint might have significantly changed. This
section describes the technique and Sec. 4.3 its implementation.

The second challenge can be detailed in two parts: burst-tolerance and CPU waste.
First, though reducing the number of cores available to a given request type forbids
it from negatively impacting other types, it also reduces its ability to absorb bursts
of arrivals [99]. We solve this tension by enabling cycles stealing from shorter types
to longer ones, a mechanism in which short requests can execute on cores otherwise
reserved for longer types — but not the opposite. The rationale for stealing is that
shorter requests comparatively cause less slowdown to long requests. Note that cycle
stealing is a similar concept to work stealing [86, 87] but is different in practice, as
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performed from the DARC dispatcher rather than from application workers (so it
does not require expensive cross-worker coordination).

Second, and similarly to message types and priority queues in network devices,
the number of request types can be different than the number of CPU cores on
the machine, so very likely the demand for each request type will be fractional —
i.e., a request type could require 2.5 workers on average. As a result, we need to
determine a strategy for sharing — or not — CPU cores between certain request types.
Sharing cores leads to a tension: regrouping types onto the same cores risks dispersion-
based blocking, but always giving entire cores to types with fractional demand can
lead to over-provisioning and starving other types. We handle this tension with two
mechanisms: grouping types together and providing spillway cores. Grouping lets all
request types fit onto a limited number of cores and reduces the number of fractional
ties while retaining the ability to separate types based on processing time. Spillway
cores allows DARC to always service types with little average CPU demand (typically
much less than an entire core) as well as undeclared, unknown requests.

Tab. 2. Notation used to define DARC

Symbol Description

N Number of request types
S Average service time
τ A request type
τ .S Type’s average service time
τ .R Type’s occurrence
δ Service time similarity factor for two types

Algorithm 1 Request dispatching algorithm

procedure Dispatch(Γ)
w ← None
for τ ∈ Γ do

if τ .queue == ∅ then
continue

else
workers ← τ .reserved ∪ τ .stealable
for worker ∈ workers do

if worker.is free() then
w ← worker
break

if w 6= None then
r ← τ .queue.pop()
schedule(r, w)
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Scheduling model. DARC presents a single queue abstraction to application work-
ers: it iterates over typed queues sorted by average service time and dequeues them in
a first come, first served fashion. Requests of a given type can be scheduled not only
on their reserved cores but also steal cycles from cores allocated to longer types — a
concept used in Cycle Stealing with Central Queue (CSCQ), a job dispatching policy
for compute clusters [100]. Algorithm 1 describes the process of worker selection;
For each request type registered in the system, if there is a pending request in that
type’s queue, DARC greedily searches the list of reserved workers for an idle worker.
If none is found, DARC searches for a stealable worker. If a free worker is found, the
head of the typed queue is dispatched to this worker. When a worker completes a
request, it signals completion to the DARC dispatcher.

Algorithm 2 Worker reservation algorithm

procedure Reserve(Types, δ)
// First group together similar request types
groups = group types(Types, δ).sort()
// Then attribute workers

S ←
∑N

j=0 Sj ∗Rj

n reserved = 0
for g ∈ groups do

g.S =
∑
τ.S ∗ τ.R ∀ τ ∈ g

d = g.S
S

P ← round(d)
if P == 0 then P ← 1
for i← 0; i <P; i++ do

g.reserved[i] ← next free worker()
n reserved++;

// Set stealable workers
n stealable ← num workers - n reserved;
for i← 0; i < n stealable; i++ do

g.stealable[i] ← next free worker()

DARC reservation mechanism. The number of workers to dedicate to a given
request type is based on the average CPU demand of the type at peak load. We
compute this demand using the workload’s composition, normalizing the contribution
of each request type’s average service time to the entire workload’s average service
time. The contribution of a given request type is its average service time multiplied
by its occurrence ratio as a percentage of the entire workload. Specifically, given a
set of N request types {τi ; i = 0 . . . N}, the average CPU time demand ∆i of τi with
service time Si and occurrence ratio Ri is:

(4.1) 0 ≤ Si ∗Ri∑N
j Sj ∗Rj

,≤ 1

Given a system with W workers, this means that we should attribute ∆i ∗W workers
to τi.
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Because CPU demand can be fractional and given the non-preemptive requirement
we set for the system, we need a strategy to attribute fractions of CPUs to request
types. For each such “fractional tie”, we have to make a choice: either ceil fractions
and always grant entire cores or floor fractions and consolidate fractional CPU
demands on shared cores. The former risks over-provisioning certain types, at the
cost of others, while the latter risks creating dispersion-based blocking by mixing
long and short requests onto the same core(s).

Our approach combines the two: first we decrease the number of “fractional ties”
by grouping request types of similar processing times, computing a CPU demand for
the entire group, and second we round this demand. As a result, for N groups, if fi
is the fractional demand of group i, the average CPU waste for DARC across all N
groups is

∑N
i 1− fi if fi ≥ 0.5, else it is 0. In practice, during bursts, because we

selectively enable work conservation through work stealing for shorter requests, CPU
waste is smaller.

Algorithm 2 describes the reservation process. First, we identify similar types
whose average service time falls within a factor δ of each other. Next, we compute
the demand for each group and accordingly attribute workers to meet it, rounding
fractional demands in the process. We always assign at least one worker to a group.
DARC grouping strategy can still result in earlier groups — of shorter requests —
consuming all CPU cores. For example, a group of long requests with a CPU demand
smaller than 0.5 will not find any free CPU core. To provide service to these groups,
we set aside “spillway” cores. If there are no more free workers, next free worker()

returns a spillway core. In our experiments (§4.4), we use a single spillway core.
Finally, we selectively enable work conservation for shorter requests and let each

group steal from workers not yet reserved, i.e., workers that are to be dedicated to
longer request types. This lets DARC better tolerate bursts of shorter requests with
little impact on the overall tail latency of the workload.

As we process groups in order of ascending service time, we favor shorter requests,
and it is possible for our algorithm to under-provision long requests — but never deny
them service thanks to spillway cores. Operators can tune the δ grouping factor to
adjust non work conservation to their desired SLOs. Grouping lets DARC handle
workloads where the number of distinct types is higher than the number of workers.

Profiling the workload and updating reservations. At runtime, the DARC dis-
patcher uses profiling windows to maintain two pieces of information about each
request type: a moving average of service time and an occurrence ratio. These are
the Si and Ri of equation 4.1. The dispatcher gathers them when application workers
signal work completions. The dispatcher uses queuing delay and variation in CPU de-
mand as performance signals. If the former goes beyond a target slowdown SLO and
the latter deviates significantly from the current demand, the dispatcher proceeds to
update reservations and transition to the next windows. During the first windows, at
startup, the system starts using c-FCFS, gathers samples, then transitions to DARC.
This technique lets DARC cope with changing workloads where a type’s profile change
(effectively, misclassification). During a profiling windows, unknown or unexpected
requests can use the spillway core(s) to execute. We discuss the sensibility of this
mechanism in Sec. 4.3.3.3.
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4.3. Perséphone

We implement DARC within a kernel-bypass scheduler called Perséphone and
provided with Service Boosters. Though DARC requires no special hardware or ma-
jor application modifications, Perséphone must meet the following requirements to
support microsecond kernel-bypass applications: (1) the networking stack must be
able to efficiently sort requests by type in the data path, (2) the scheduler must be
able to quickly make per-request scheduling decisions, and (3) profiling workloads
and updating DARC reservation must present low overheads.

Perséphone meets the first requirement with an API for capturing request types,
request filters. Using request filters, programmers provide a way for the system to
classify requests based on types as they enter the system. Perséphone meets the
remaining two requirements with a carefully architected networking stack, profiler,
and scheduler packaged in a user-level library with the application.

4.3.1. System model. Perséphone is designed for datacenter services that must
handle large volumes of traffic at microsecond latencies. Examples include key-
value stores, fast inference engines [101], web search engines and RESTful micro-
services. We assume the application uses kernel-bypass for low latency I/O (e.g.,
with DPDK [102] or RDMA [103]) and performs all application and network pro-
cessing through Perséphone.

4.3.2. Request filters. Perséphone relies on user-defined functions, i.e., “re-
quest filters” to classify application-level payloads. A request filter accepts a pointer
to an application payload (Layer 4 and above) and returns a request type. If the filter
cannot recognize a request, Perséphone categorizes it as UNKNOWN and places it in a
low priority queue. Though most of our target application use optimized protocols
such as Redis’ RESP [92] that allow a filter to look-up for a header field to parse the
request type, we opted for generality and allowing users to write arbitrarily complex
filters. There is, of course, a performance trade-off: a non-optimized request filter will
impact the dispatcher’s performance because request filters are “bumps-in-the-wire”
on the dispatching critical path. We leave it to users to quantify this trade off based
on the performance they wish to obtain from the dispatcher (i.e., how many requests
per second should it be able to sustain). While a complete study of filter performance
is out of scope for this paper, we found that for standard protocols where the request
type’s position is known in the header, our dispatcher can process up to 7 millions
packets per second on our testbed, a number competitive with existing kernel-bypass
schedulers.

4.3.3. Perséphone architecture. Perséphone consists of three components,
shown in Figure 4.2: one or many net Service Units dequeueing packets from the
network card, a dispatcher applying request filters and performing DARC schedul-
ing, and application Service Units performing application processing (e.g., fetching
the value from the key-value store). These components operate as an event-driven
pipeline and process packets as follows:

1 On the ingress path, the net Service Unit takes packets from the network
card and pushes them to the dispatcher, which
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Fig. 4.2. Perséphone architecture. After the net Service Unit processes incom-
ing packets, the dispatcher classifies requests using a user-defined filter. Requests
wait in typed queues for DARC to push them to Service Unit.

2 Classifies incoming requests using a user-defined request filter and

3 Stores them in typed queues, i.e., buffers specialized for a single request type.

4 The dispatcher, running DARC, selects a request from a typed queue and
pushes it to a free application Service Unit.

5 The Service Unit processes the request, formats a response buffer, and

6 Pushes a pointer to that buffer to the NIC. In addition,

7 Service Units notify the dispatcher of requests’ completion.

4.3.3.1. Networking. Both the net Service Unit and application Service Units re-
ceive a network context at initialization. This context gives them unique access to
receive and transmit queues in the NIC. Perséphone registers a statically allocated
memory pool with the NIC for contexts to quickly allocate new buffers when receiving
packets. This memory pool is backed by a multi-producer, single-consumer ring so
Service Units can release buffers after transmission. Both the net and application
Service Units use a thread local buffer cache to decrease interactions with the main
memory pool. For requests contained in a single application-level buffer, we perform
zero-copy and pass along to Service Units a pointer to the network buffer. To issue a
response on the transmit path, the Service Unit reuses the ingress network buffer to
host the egress packet, reducing the number of distinct network buffers in use (with
the goal of allowing all buffers to fit in the Last Level Cache space used by DDIO [104]
— usually 10% of the LLC).

4.3.3.2. Component Communication. The dispatcher uses single-producer, single-
consumer circular buffers to share requests and commands with application Service
Units in a lockless interaction pattern. We use a lightweight RPC design inspired by
Barrelfish [105], where both sender and receiver synchronize their send/read heads
using a shared variable. To reduce cache coherence traffic between cores, the sender
synchronizes with the receiver — to update the read head and avoid overflows — only
when its local state shows the buffer to be full. In our prototype, operations on that
channel take 88 cycles on average.
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4.3.3.3. Dispatcher. The dispatcher maintains three main data structures: a list
of RequestType objects, which contains type information such as the type ID and
instrumentation data; typed request queues; and a list of free Service Units. In
addition, the dispatcher holds a pointer to a user-defined request filter. The list
of free Service Units is updated whenever a request is dispatched and each time
application Service Units notify the dispatcher about work completion; this is done
using a specific control message on the memory channel shared between dispatcher
and each Service Unit. Finally, the dispatcher maintains profiling windows, during
which it computes a moving average of service times by request type and increment
a counter for each type seen so far. DARC uses these profiling windows to compute
resource allocation (§4.2) and adjust to changes in the workload’s composition. In our
prototype, at the median, updating the profile of a request takes 75 cycles, checking
whether an update is required takes about 300 cycles, and performing a reservation
update takes about 1000 cycles.

To control the sensibility of the update mechanism in face of bursty arrivals,
we set a lower bound on the number of samples required to transition — 50000 in
our experiments — and the minimum deviation in CPU demand from the current
allocation — 10% in our experiments. As a measure of flow control, when the system
is under pressure and Service Units cannot process requests as fast as they arrive, the
dispatcher drops requests from typed queues are full. This allows to shed load only
for overloaded types without impacting the rest of the workload.

4.3.3.4. Application Service Units. Upon receiving a pointer toward a request,
application Service Units dereference it to access the payload. As an optimization,
they can access the request type directly from the RequestType object rather than
duplicating work to identify needed application logic (e.g., to differentiate between
a SET or GET request). Once they finish processing the request, they reuse the
payload buffer to format a response and push it to the NIC hardware queue using
their local network context. Finally, they signal work completion to the dispatcher.

Tab. 3. Perséphone’s API exposes calls to register and update request types and
register request filters for ingress traffic classification.

System call Description

p s p i n i t ( hw cfg , n workers ,
∗ f i l t e r , [ types ] )

Initialize NIC, CPUs,
and Service Units; reg-
ister request types and
configure a request filter

p s p r e g i s t e r r t y p e ( type ) Register a new request type

p s p s e t r f (∗ f i l t e r )

Update the request filter
used to classify ingress
requests

p s p r e g i s t e r s e r v i c e u n i t ( ) Add a new Service Unit
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4.3.4. Perséphone’s API. Table 3 describes the system call interface exposed
by Perséphone. Perséphone exposes a set of API calls to manage the system. Ap-
plication call psp init to set up the hardware managed by the libOS (e.g., network
interfaces, CPUs), the network stack and the request dispatcher. Through this call,
users also register a list of expected request types and the filter function to be used
at runtime for classification. At runtime, users can call psp register rtype and
psp set rf to update request types or register new ones and to update the request
filter. Finally, the system can be scaled up and down by adding application Service
Units using psp register service unit.

4.3.5. Example usage. We now walk through a simple example where a pro-
grammer sets up Perséphone for an in-memory database and a RESTful service. Both
use an application-defined protocol. For the in-memory database, this protocol in-
cludes, alongside other necessary input parameters, the type of transaction to be
executed. For the REST API, the protocol is HTTP, and the request type the API
endpoint (either ”help” or ”compress”). Snippet 4.3 presents this workflow: the user
defines request filters for both applications (l. 5-19) and create two request types (l.
22-24); then, she initializes Perséphone (l. 27 − 30) and register 16 Service Units (l.
32-35).
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1 #inc lude <l i b p s p . h>

2

3 /∗ F i l t e r f u n c t i o n s examples ∗/

4 #d e f i n e TXN ID POS 42

5 enum ReqType txn request filter(char *payload){
6 return ∗ s t a t i c c a s t <ReqType>(

7 ( i n t ∗) payload [ TXN ID POS ]

8 ) ;

9 }
10

11 #d e f i n e COMPRESS ENDPOINT ”/ compress ”

12 #d e f i n e HELP ENDPOINT ”/ help ”

13 enum ReqType http request filter(char *payload) {
14 i f ( s t r s t r ( payload , COMPRESS ENDPOINT) )

15 re turn ReqType : :COMPRESS;

16 i f ( s t r s t r ( payload , HELP ENDPOINT) )

17 re turn ReqType : : HELP;

18 re turn ReqType : :UNKNOWN;

19 }
20

21 /∗ I n i t Persephone ∗/

22 ReqType types [ 2 ] = {
23 COMPRESS ENDPOINT, HELP ENDPOINT

24 } ;

25

26 u i n t 3 2 t n workers = 16 ;

27 p s p i n i t (

28 c o n f i g f i l e p a t h , n workers ,

29 &h t t p r e q u e s t f i l t e r , types ,

30 )

31

32 /∗ Reg i s t e r S e r v i c e Units ∗/

33 f o r ( i n t i = 0 ; i < n workers ; ++i ) {
34 p s p r e g i s t e r s e r v i c e u n i t ( un i t s [ i ] ) ;

35 }

Fig. 4.3. Configuring Perséphone using the C++ API bindings.

4.4. Evaluation

We built a prototype of Perséphone, in about 2600 lines of C++ code, to evaluate
DARC scheduling against policies provided by Shenango [87] and Shinjuku [88]:

• For a workload with 100x dispersion between short and long requests, Perséphone
can sustain 2.35x and 1.3x more throughput compared to Shenango and Shin-
juku, respectively.
• For a workload with 1000x dispersion, Perséphone can sustain 1.4x more

throughput than Shenango and reduce slowdown by up to 2x over Shinjuku.
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• For a workload modeled on the TPC-C benchmark, Perséphone reduces slow-
down by up to 4.6x over Shenango and up to 3.1x over Shinjuku.
• For a RocksDB application, DARC can sustain 2.3x and 1.3x higher through-

put than Shenango and Shinjuku, respectively.

Tab. 4. Workloads exhibiting 100x and 1000x dispersion.

Workload
Short Long

Runtime (µs) Ratio Runtime (µs) Ratio
High Bimodal 1 50% 100 50%
Extreme Bimodal 0.5 99.5% 500 0.5%

Tab. 5. The TPC-C benchmark models operations of an online store. Payment
and NewOrder transactions are most frequent.

Transaction name Runtime (µs) Ratio Dispersion
Payment 5.7 44% 1x

OrderStatus 6 4% 1.05x
NewOrder 20 44% 3.3x
Delivery 88 4% 15.4x

StockLevel 100 4% 17.5xx

4.4.1. Experimental setup. Workloads. We model workloads exhibiting dif-
ferent service time dispersion after examples found in academic and industry ref-
erences. Often such workloads exhibit n-modal distributions with either an equal
amount of short and long requests (e.g., workload A in the YCSB benchmark [106])
or a majority of short requests with a small amount of very long requests (e.g. Face-
book’s USR workload [107]). Dispersion between shorter and longer requests is com-
monly found to be two orders of magnitude or more [108, 109, 110]. We evaluate
High Bimodal and Extreme Bimodal (Table 4), two workloads that exhibit large ser-
vice time dispersion, and TPC-C (Table 5), which models requests in the eponymous
benchmarking suite [111], a standardized OLTP model for e-commerce. Finally, we
evaluate DARC using RocksDB, an in-memory database used at Facebook [112].

With High Bimodal long requests represent 50% of the workload but “only” exhibit
100x dispersion. With Extreme Bimodal, long requests are much slower — 1000x
slower — but very infrequent (0.5% of the mix). We profile TPC-C transactions with
an in-memory database and run it as a synthetic workload. Our goal with this TPC-C
is to evaluate how Perséphone performs with an n-modal request distribution. The
workload consists of five request types with moderate service time dispersion — at
most 17.5x between infrequent StockLevel requests and frequent Payment requests.
We assume that requests are not dependent on each other. Finally, the RocksDB
workload is made of 50% GETs and 50% SCANs requests, executing for 1.5µs and
635µs, respectively, and exhibiting a 420x dispersion factor. This workload strikes a
balance between High Bimodal and Extreme Bimodal.

Performance metrics.
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We present two performance views: (i) the slowdown at the tail taken across all
requests in the experiment, and (ii) the typed tail latency, i.e, a selected percentile
over only the type’s response times’ distribution. These views help us to understand
the various trade-offs offered by the systems and policies under evaluation. For both
metrics, we use the 99.9th percentile and plot them as a function of the total load on
the system.

Client. The client is a C++ open loop load generator that models the behavior of
bursty production traffic. It generates requests under a Poisson process centered at
the workloads’ average service time. Each experiment runs for 20 seconds and we
discard the first 10% of samples to remove warm-up effects. We ran our experiments
for several minutes and found the results similar. To interact with the server, we use
a simple protocol where TPC-C transactions ID, RocksDB query ID, and synthetic
workload requests types are located in the requests’ header. We accordingly register
request filters on the server to map these IDs to request types. Request filters add a
one-time ≈ 100 nanoseconds overhead to each request.

Systems. In addition to Perséphone, we compare two state-of-the-art systems:
Shenango and Shinjuku. Shenango’s IOKernel uses RSS hashes to steer packets to
application cores, which perform work stealing to balance load and avoid dispersion-
based blocking, in a fashion similar to ZygOS [86]. We also compare to a version of
Shenango with work stealing disabled, to evaluate d-FCFS. We choose Shenango over
ZygOS due to its more recent implementation and its support for UDP. Shinjuku
implements microsecond-scale, user-level preemption by exploiting Dune’s virtual-
ization [98] at up to 5µs frequency. Leveraging this ability to preempt, Shinjuku
implements a single queue policy, where preempted requests are enqueued at the tail
of the queue, and a multi-queue policy with a queue per request type and where
preempted requests are enqueued at the head of their respective queue. The multi-
queue policy selects the next queue to dequeue using a variant of Borrowed Virtual
Time [113]. Across experiments, DARC updates reservations whenever a request
experiences queuing delays of ten times its average profiled service time. Lastly, all
systems use UDP networking.

Testbed. We use 7 Cloudlab [114] c6420 nodes (6 clients, 1 server), each equipped
with a 16-core (32-thread) Intel Xeon Gold 6142 CPU running at 2.60GHz, 376GB
of RAM, and an Intel X710 10 Gigabit NIC. The average network round trip time
between machines is 10µs. We disabled TurboBoost and set isolcpu. Shinjuku
and Perséphone run on Ubuntu 16.04 with Linux kernel version 4.4.0. Shenango
runs on Ubuntu 18.04 with Linux kernel version 5.0. Shinjuku uses one hyperthread
for the net worker and another for the dispatcher, collocated on the same physical
core. Shenango runs its IOKernel on a single core, and Perséphone runs both its
net worker and dispatcher on the same hardware thread. All systems use 14 worker
threads running on dedicated physical cores. For Shenango, we provision all cores at
startup and disable dynamic core allocation since we want to evaluate performance for
a single application and Shenango otherwise re-assign cores to multiple applications
running on the same machine.
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Fig. 4.4. Evaluating DARC on High Bimodal (50.0:1.0 – 50.0:100.0) within
Perséphone. The first column is p99.9 overall slowdown, the second and third p99.9
latency for short and long requests, respectively. For all columns, the X axis is the
total load on the system. DARC improves slowdown over c-FCFS by up to 15.7x,
at a cost of up to 4.2x increased latency for long requests.

4.4.2. DARC versus existing policies. To validate that DARC improves per-
formance of short requests compared to c-FCFS and d-FCFS, we run these policies on
High Bimodal in Perséphone. Figure 4.4 presents our results. c-FCFS improves the
tail latency of short requests over d-FCFS by eliminating local hotspots at workers,
a result consistent with previous work [86]. However, because c-FCFS does not pro-
tect the service time distribution of short requests, they experience dispersion-based
blocking from long requests. With c-FCFS, short requests experience 309µs p99.9
latency at 260kRPS, driving slowdown for the entire workload to 283x. In contrast,
DARC reserves 1 core for short requests and schedules them first, reducing slowdown
upon c-FCFS by a factor of 15.74 and can sustain 2.3x higher throughput for a
SLO of 20µs for short requests. This comes at the cost of up to a 4.2x increase in tail
latency for long requests. The average CPU waste occasioned by reserving the core is
0.86 core. Because slowdown is driven by short requests and the two graphs are very
similar, we omit short requests in the next sections and focus on overall slowdown
and tail latency for long requests.

4.4.3. How much non work-conservation is useful? We empirically validate
DARC’s reservation mechanism (§4.2) by manually configuring the number of work-
ers dedicated to short requests from 0 to 14. We call this version “DARC-static”.
It schedules short requests first and let them execute on all the cores. When the
number of reserved workers is 0, DARC-static is equivalent to a simple Fixed Priority
policy. Figure 4.5 presents the overall slowdown experienced by High Bimodal (a)

4The network contributes 10µs to response time. At 260kRPS, short requests experience 309µs
end-to-end latency with c-FCFS and 18µs with DARC. This means that server-side slowdown is
37x better with DARC.
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Fig. 4.5. Gradually adjusting the degree of work conservation (“ DARC-static”)
with High Bimodal and Extreme Bimodal at 95% load. Reserving 1 (a) and 2 (b)
cores decreases slowdown by 4.4x and 1.5x, respectively.

and Extreme Bimodal (b) at 95% load. We observe that for the former, the best
slowdown — a 4.4x improvement — is achieved with 1 core, and for the latter with 2
cores — a 1.5x improvement. Those settings validate DARC’s selection, as described
in Sec. 4.4.2 and Sec. 4.4.4.

For comparison, we draw the slowdown line offered by c-FCFS on Perséphone.
Reserving too many workers results in long requests being starved. Simple Fixed
Priority scheduling results in dispersion-based blocking for short requests.

4.4.4. Comparison with Shinjuku and Shenango. Figures 4.6a and 4.6b
show the performance experienced by High Bimodal and Extreme Bimodal in all
three systems. Figure 4.7 presents TPC-C performance, and Figure 4.8 RocksDB
performance. Shenango implements d-FCFS and c-FCFS. Shinjuku uses its multi-
queue policy for High Bimodal, TPC-C, and RocksDB; and its single queue policy
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(a) High Bimodal For a 20x slowdown target, DARC can sustain 2.35x and 1.3x more traffic than
Shenango and Shinjuku, respectively.

(b) Extreme Bimodal For a 50x slowdown target, DARC can sustain 1.4 more load than Shenango.
DARC also reduces slowdown by up to 2x over Shinjuku. Note the different Y axis for slowdown
and long requests tail latency.

Fig. 4.6

for Extreme Bimodal (per the Shinjuku paper [88]). We invested significant efforts
in tuning Shinjuku for short requests performance and preempting as frequently as
possible. We could only sustain 75% for High Bimodal (5µs interrupts) and RocksDB
(15µs interrupts), and 55% load for Extreme Bimodal (5µs interrupts), after which
the system starts dropping packets and eventually crashes (despite sustaining close
to 4.5 millions 1µs RPS without preemption on our testbed). We found that reducing
the frequency of preemption helped sustain higher loads at the expense of shorter
requests. TPC-C is most favorable to Shinjuku because the services times are higher
and dispersion smaller. Shinjuku can handle 85% of this load when preempting every
10µs.

4.4.4.1. High Bimodal. Shinjuku improves the tail latency of short requests over
Shenango’s c-FCFS by preempting long requests. However, Shinjuku aggressively
preempts every 5µs to maintain good latency for short requests and adds a constant
overhead — at least 20% in this experiment — to preempted requests. As a result,
it can sustain only 75% of the load before dropping requests. In comparison, DARC
reserves 1 core for short requests and can sustain 2.35x and 1.3x more load than
Shenango and Shinjuku, respectively, for a target slowdown of 20x. At 75% load,
DARC reduces slowdown by 10.2x and 1.75x over Shenango and Shinjuku,
respectively. Perhaps more importantly, compared to Shinjuku’s preemption system
DARC consistently provides better tail latency for long requests. We also observe
that Perséphone’s centralized scheduling offers better performance for long requests
than Shenango compared to c-FCFS on Perséphone because Perséphone does not
have to approximate centralization with work stealing.
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4.4.4.2. Extreme Bimodal. We observe similar trends for this workload. For a tar-
get 50x slowdown, both Shinjuku and Perséphone can sustain 1.4x higher through-
put than Shenango. However, past 55% load, the overheads of aggressively preempt-
ing every 5µs is too expensive and Shinjuku starts dropping packets. For long requests,
preemption overheads are always at least 24% (620µs for 500µs requests). In con-
trast, Perséphone reserves 2 cores to maintain good tail latency for short requests and
can sustain 1.25x more load while reducing slowdown up to 2x over Shinjuku.
All the while, Perséphone provides tail latency for long requests competitive with
Shenango. For this workload the CPU waste occasioned by DARC is, on average,
0.67 core.

4.4.4.3. TPC-C. For this workload, DARC groups Payment and OrderStatus

transactions (group A), lets NewOrder transactions run in their own group (B), and
groups Delivery and StockLevel transactions (group C). DARC attributes workers
1 and 2 to group A, 3 − 8 to group B, and 9 − 14 to group C. Group A can steal
from workers 3− 14, group B from workers 9− 14, and group C cannot steal. There
is no average CPU waste with this allocation because groups A and B are slightly
under-provisioned and can steal from C. Figure 4.7 presents our findings. DARC
strongly favors shorter transactions from groups A and B. Compared to Shenango’s
c-FCFS, DARC provides up to 9.2x, 7x and 3.6x better tail latency to Payment,
OrderStatus and NewOrder transactions, respectively. These transactions represent
92% of the workload, resulting in up to 4.6x slowdown reduction at the cost of
5% throughput from the longer StockLevel transactions. Because DARC excludes
the longer Delivery and StockLevel transactions from 8 out of 14 workers, those
transactions suffer higher tail latency compared to Shenango’s c-FCFS. Interestingly,
however, due to DARC’s priority-based scheduling, Delivery transactions experience
tail latency competitive with c-FCFS at high load. In addition, though benefiting
Payment and OrderStatus requests, Shinjuku’s offers performance similar to c-FCFS
for the moderately slow NewOrder requests, because it preempts them halfway to pro-
tect the shorter requests. Likewise, Delivery and StockLevel requests suffer from
repetitive preemption. In contrast, DARC is able to maintain good tail latency for

Fig. 4.7. TPC-C with Shenango, Shinjuku and Perséphone. The first column is the
p99.9 slowdown across all transactions. Each subsequent column is the p99.9 latency
for a given transaction. Transactions are presented in ascending average service
time. Note the different Y axis for slowdown and latency. At 85% load, Perséphone
offers 9.2x, 7x, and 3.6x improved p99.9 latency to Payment (b), OrderStatus (c)
and NewOrder (d) transactions, compared to Shenango’s c-FCFS, reducing overall
slowdown by up to 4.6x (a). For a slowdown target of 10x, Perséphone can sustain
1.2x and 1.05x more throughput than Shenango and Shinjuku, respectively.
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NewOrder requests, offers a better trade-off for Delivery and Stocklevel at high
load (not show in the graph for the latter), and reduces slowdown up to 3.1x
compared to Shinjuku.

Given a 10x overall slowdown target, Perséphone can sustain 1.2x and 1.05x
higher throughput than Shenango and Shinjuku, respectively.

Fig. 4.8. RocksDB slowdown with 50% GETs (1.5µs), 50% SCANs (635µs). For
a 20x slowdown target, DARC can sustain 2.3x and 1.3x higher throughput than
Shenango and Shinjuku, respectively.

4.4.4.4. RocksDB. We use Perséphone to build a service running RocksDB and
create a Shenango runtime running a similar RocksDB service. Shinjuku already im-
plements a RocksDB service. The database is backed by a file pinned in memory. We
use the same workload as Shinjuku’s: 50% GET requests and 50% SCAN requests
over 5000 keys. On our testbed, GETs execute in 1.5µs and SCANs in 635µs. Con-
sistently, with previous experiments, we were able to sustain only about 75% of the
theoretical peak load with Shinjuku using a 15µs preemption timer and its multi-
queue policy. We omit d-FCFS because it offers poor performances. DARC reserves
1 core for GET requests, idling 0.96 core on average. Figure 4.8 presents slowdown for
this experiment: for a 20x slowdown QoS objective, DARC can sustain 2.3x
and 1.3x higher throughput than Shenango and Shinjuku, respectively.

52



Fig. 4.9. p99.9 latency and guaranteed cores for two request types A and B during
4 phases, under c-FCFS and DARC. Top boxes describe phases (service times and
ratios). During transitions, Perséphone’s profiler picks on the new service time and
ratio for each type and accordingly adjusts core allocation. Markers for the core
allocation row indicate reservation update events.

4.4.5. Handling workload changes. In this section, we demonstrate Perséphone
capacity to react to sudden changes in workload composition. For comparison with a
baseline, we include c-FCFS performance. The experiment study three phase changes:
(1) fast requests suddenly become slow and vice-versa (2) the ratio of each type change
and (3) the workload becomes only fast requests. Across this experiment, we keep the
server at 80% utilization. Each phase lasts for 5 seconds. Figure 4.9 presents the re-
sults. Green boxes describe phases. The first row is the 99.9th percentile latency and
the second row the number of cores guaranteed to each type (not including stealable
cores).

At first, B requests can run on all 14 cores — 1 dedicated core and 13 stealable
cores — and A requests are allowed to run on 13 cores. Latency is slightly higher
for B requests at the beginning of the experiment because the system starts in c-
FCFS before proceeding to the first reservation. In the second phase, we inverse
the service time of A and B to evaluate how DARC can handle miss-classification.
During the transition, which takes about 500ms, “B-fast” requests observe increased
latency — up to 50µs— as “B-slow” requests that are still in the system occupy the
13 stealable cores of A and “A-slow” requests are allowed to run on all cores before the
reservation update. The graph shows latency increase before the transition because
these B requests were already in the system and the X axis is the sending time.

During the second transition, we change the ratio of each type: A requests now
make up 99.5% of the mix. As a result, their CPU demand increase and DARC re-
serves them 2 cores. For this new composition, 80% utilization on the server results in
increased throughput, and latency becomes slightly higher for both types of requests
as all queues grow larger.

Finally, we change the workload to be only made of A requests. Despite A requests
being able to run on all 14 cores, pending B requests can be serviced on the spillway
core.
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4.5. Discussion

Networking model. In the current implementation, the net worker is a layer 2 for-
warder and performs simple checks on Ethernet and IP headers. Application workers
handle layers 4 and above and directly perform TX. This design intends to maxi-
mize our dispatcher’s performance — the main bottleneck in Service Boosters — and
make it competitive with existing systems. Shenango and Shinjuku separate roles in
a similar way. There is no fundamental reason, though, for not having the net worker
handle more of the network stack Using a stateful network stack would preclude of-
floading TX to the workers since shared state between the net worker and application
workers would hinder performance. For TCP, this problem is partly addressed by
TAS [115] and Snap [85].

Interrupts at µs scale. Though desirable in theory because it enables a better
approximation to SRPT, interrupts at the microsecond scale come with two classes
of challenges. The first is about performance. Even with the possibility to interrupt
in 1µs, if a 1µs request enters the system to find all cores busy processing longer
requests, it would experience a slowdown of at least 2x. In addition, preemption has
to be aggressively frequent to minimize the impact of worst case scenarios where a
short request enters the system at the same time a preemption check just occurred.
As seen in our experiments, this aggressivity has a noticeable impact on performance.
The second class of challenges is related to practicality. One has to carefully re-work
existing applications to ensure preemption cannot happen during critical sections —
memory management, interaction with thread local storage, etc. — or non re-entrant
functions. This represents considerable efforts and spurred research in other designs
trade-off such as semi-cooperative scheduling [116].

4.6. Related work

Kernel-bypass. Bypassing a general-purpose kernel to provide application-tailored
routines has been revisited regularly over the past fifty years. Some notable examples
include the RC 4000 multi-programming system [117], Hydra [118], Mach [119],
Chorus [120], SPIN [121] and Exokernel [122].

More recently, faster networks and stagnating CPU speeds have led researchers to
look more closely at user-level network stacks [83, 115] to provide high-performance
storage systems [123, 124, 125, 126], access to disaggregated memory [127], user-
level network services [115] such as eRPC [84], and fast I/O processing (e.g., IX [4]
and Chronos [128]). Similarly, user-level scheduling has been explored with Zy-
gOS [86] and Shinjuku [88], which focus on improving tail latency by implement-
ing centralized dispatch policies and user-level preemption, both of which outper-
form current decentralized offerings, as is well understood by theory [129, 99, 130].
DARC builds on this recent line of work with a more application-customized solu-
tion, motivated by recent insights when observing performance gain from sharing
application-level information with the dataplane [7, 131, 132], and “common case
service acceleration”, which can improve tail latency for important requests [133].
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Scheduling Policies: Recent works on kernel-bypass and microsecond-scale ap-
plications have revived research interest in scheduling policies, specifically for tail-
tolerance. We compare DARC with existing policies proposed for process or packet
scheduling, and identified the best fit for each. Table 6 summarizes our findings.
DARC shares ideas with Fixed Priority (FP) scheduling without suffering from head-
of-line blocking and with Cycle Stealing with Central Queue (CSCQ [100]), but does
not impose limits on stealing for shorter requests. It also shares ideas with Static
Partitioning (SP) without being as work conservation avoidant, thus being able to
absorb bursts. DARC targets applications with high service time dispersion similarly
to Processor Sharing policies, implemented as the Completely Fair Scheduler [136],
Borrowed Virtual Time [113], and Multi-Level Feedback Queue [135] in commod-
ity operating systems and variants of these on datacenter operating systems [88].
Processor sharing policies, despite being application agnostic, are expensive or im-
possible to implement in many environment, e.g., the public cloud. DARC is, to our
best knowledge, the first application-aware and non-preemptive policy that classifies
requests to improve RPC tail latency and can be implemented on a kernel-bypassed
system serving microsecond-scale requests. We note that existing work has specifically
made use of non work conservation to reduce resource contention in SMT architec-
tures [137, 138, 139], though with a focus on instruction throughput rather than
tail latency for datacenter workloads.

In-network end-host scheduling. R2P2 [140] and Metron [141] propose to inte-
grate core scheduling in the network. Loom [142] proposes a novel NIC design
and OS/NIC abstraction to express rich hierarchies of network scheduling and traffic
shaping policies across tenants. Our work is orthogonal since request filters can be
offloaded to the network. eRSS [143] scaling groups offer the possibility to schedule
request groups, which works only on network headers and requires a specific pro-
gramming model from the NIC. RSS++ [144] addresses RSS vulnerability to traffic
imbalance but cannot handle variability in application-request processing times. Intel
recently introduced Application Device Queues (ADQ) [145], a feature for applica-
tions to reserve NIC hardware queues. ADQ requires specific network interfaces (cur-
rently Intel’s Ethernet 800 Series) and does not allow applications to further partition
reserved queues by request type.

Network scheduling for tail latency. Prioritizing packets to improve tail latency
has been extensively studied in the networking literature [89, 146, 90, 147, 148,
149, 150]. As analyzed in [151], this line of work uses priority queues in switches
to approximate Shortest Remaining Processing Time (SRPT) scheduling and avoid
head-of-line blocking caused by FIFO policies. Dedicating more CPU resources to
short requests is similar to prioritizing packets belonging to short flows, but whereas
network devices schedule at the granularity of packets — bounded by MTU sizes —
and preempt long flows by not sending their packets, there is no affordable way to
preempt a long request once dispatched at a CPU core within microseconds. DARC
efficiently partitions CPU resources among requests by profiling their CPU demand
and enabling work-conservation only for short requests, capping resources allocated
to long requests and resulting in a similar trade off than Homa [90], pFabric [89], or
HULL [94].
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Other scheduling effort to improve tail latency. Haque et al. [152] exploit DVFS
and heterogeneous CPUs to speed up long requests in latency sensitive workloads at
the expense of short requests, with the goal of improving overall tail latency. Service
Boosters is orthogonal to such optimization, since Service Units define a clear target
to configure power and core settings for a given stage of the processing pipeline.
Another line of work adapts the degree of parallelism of the pipeline — usually stages
running longer requests — to improve overall tail latency [6, 153], but this comes at
the cost of stages running shorter requests from which resources are taken away.

4.7. Takeaways

This chapter described Perséphone, a new kernel-bypass OS scheduler for Service
Boosters that exploits DFG annotation and application-layer protocols to implement
DARC, an application aware, not work conserving policy. DARC maintains good tail
latency for shorter requests in heavy-tailed workloads that cannot afford the overheads
of existing techniques such as work stealing and preemption. DARC profiles requests
and dedicate cores to shorter requests, guaranteeing they will not be blocked behind
long requests. Our prototype of the Perséphone booster maintains good tail latency
for shorter requests and can handle higher loads with the same amount of cores than
state-of-the-art kernel-bypass schedulers, overall better utilizing data center resources.

In the next chapter, we demonstrate how Service Boosters can be used to build
a resource management booster, DeDoS, that scales Service Units under overload,
consuming exactly the resources required to maintain good latency.
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CHAPTER 5

DeDoS

This chapter presents DeDoS, a module for Service Boosters that exploits aware-
ness of the request processing pipeline to harvest resources in the data center and
mitigate tail latency arising from bottleneck stages.

Often, performance bottlenecks affect a specific stage in the request processing
pipeline and requests causing them abuse a fixed resource. For example, the Billion
Laughs exploit described in chapter 3 abuses CPU at the deserialization stage by
controlling the number of nested entities in the serialized payload. Like the long
and infrequent requests in an heavy-tailed workload, asymmetric attacks tend to be
relatively low-volume and often do not appear different from the rest of the traffic.
We have seen that, given the ability to classify requests like proposed in the previous
chapter, one can devise scheduling solutions to protect the rest of the traffic against
the long tail of the workload’s distribution. Unfortunately, this is not always possible,
and operators typically resort to deploying more resources to tame high tail latency.
When resource utilization and/or tail latency increases, the service is automatically
replicated as virtual machines (VMs) or lightweight containers, on multiple machines
to scale “elastically” to the extra load. Replicating all of the VM’s or container’s
resources, regardless of which are being consumed, can be enormously costly, making
this approach unusable for most service providers. For example, if only a TCP state
table is being exhausted (e.g., due to a SYN flood), the replication of an entire VM
mitigates the attack, but does so at an enormous overhead (since the TCP state table
is a minuscule portion of the system’s overall footprint).

This chapter details how, using the Service Boosters architecture, one can build
a resource harvesting booster to selectively scale overloaded stages of the request
processing pipeline. Ideally, each Service Unit in the pipeline handles some small,
focused aspect of an application that may be vulnerable to resource exhaustion. Ex-
ample components include code for performing TLS handshakes or HTTP requests
parsing. The DeDoS booster comes as an adaptive controller making real-time de-
cisions on placing Service Units within physical resources (e.g., machines in a data
center) and then adaptively clones, merges, or migrates them in order to meet Service
Level Objectives (SLOs).

Service Boosters and the DeDoS booster offer two benefits for improving tail
latency. First, fine-grained components make it easier for the operator to harvest
all available resources on all machines, exactly as needed. For instance, the system
can respond to a TLS renegotiation attack by temporarily enlisting other machines
with only spare CPU cycles to help with TLS handshakes. Second, the replication
approach is agnostic of the exact source of overload and can thus potentially mitigate
unknown contributors of high tail latency. Once the DeDoS booster recognizes that
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a component is overloaded or its throughput appears to drop, it can respond by
replicating that particular component – without having seen the problematic requests
before, and without knowing the specific vulnerability of the application. This allows
to generally better utilize the datacenter resources.

The rest of this chapter presents the design of the DeDoS (§5.2) booster and
strategies for dynamic adaptation (§5.3). The booster is evaluated through three case
studies (§5.5): a web server developed from scratch using Service Boosters’ DFG API
(similar to the one we built for FineLame’s evaluation) and two existing software
systems: a user-level transport library written in C ported over to Service Boost-
ers, and a routing software written using a declarative domain-specific language [16]
that compiled into a Service Boosters dataflow. We evaluate Service Boosters and
the DeDoS booster and show that using fined-grained components has low overheads
compared to equivalent code executed outside of Service Boosters. Moreover, the De-
DoS booster is able to defend against a wide range of asymmetric attacks, maintaining
significantly higher throughput for a much longer amount of time in the presence of
changing attacks, comparable to traditional replication strategies.

5.1. Motivating example

Consider a 2-tiered web service hosted in a data center, where an HTTP server
queries a database server in response to users’ requests. The attacker launches a TLS
renegotiation attack [154] that consumes CPU cycles on the HTTP server. Hence,
legitimate requests are being served very slowly, or not at all. In this typical asym-
metric attack, the attacker is unable to overwhelm the defender’s network bandwidth
but succeeds by exhausting other resources (here, CPU cycles).

Our goal is to automatically handle such performance degradation, even if it has
a new vector, to maintain quality of service (QoS) to the legitimate clients, and to
enlist the exact amount and type of resources required, no more.

5.1.1. Strawman solutions. One possible defense against traditional perfor-
mance degradation such as DoS attacks or increase in load is to performance overload
control, usually by filtering or blocking incoming traffic – either based on source ad-
dresses, specific traffic content or other traffic characteristics. However, this relies
heavily on request classification, thus is susceptible to false positives and negatives.
Moreover, it is difficult to differentiate between legitimate spikes in traffic and actual
attacks. A service running on Service Boosters could also rely on scheduling tech-
niques such as Perséphone, but in this chapter we compare with software not running
on Service Boosters yet.

Another approach is to increase resource capacity via replication. For instance,
to handle a TLS renegotiation attack, an operator can launch more web server VMs
to sustain more connections. This technique does not depend on accurate detection
but it can be inefficient. In the TLS renegotiation example, even though the attack
is limited to the key generation logic (and thus stressing CPU usage on the host),
näıve replication replicates the entire web server, unnecessarily wasting non-affected
resources such as memory.
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5.1.2. With Service Boosters. Overall, data centers machines are under uti-
lized [155], but current software architectures cannot effectively use them. Here, the
database servers’ CPUs will be mostly idle while the web servers’ CPUs are over-
whelmed. If the former’s CPUs were able to alleviate the load on the latter’s by
contributing their computational power, the capacity at the bottleneck (TLS hand-
shake) would increase.

Service Boosters allow programmers to design application stacks as smaller func-
tional pieces that can be replicated and migrated independently, effectively declaring
the request processing pipeline to the execution environment. This additional flexi-
bility enables a service under overload to use all of the available datacenter resources
for its defense by temporarily enlisting other machines running different services,
resulting in a substantial increase in the service’s capacity and achieving better QoS.

For example, in TLS renegotiation, instead of replicating the entire web server, we
can instead replicate only the key generation logic. If the database servers have spare
CPU cycles, they will be able to accommodate execution of this logic and alleviate the
CPU bottleneck caused by the attack. In contrast, näıve replication would not work
when the database servers lack the entire set of resource required to run additional
HTTP servers. In other forms of asymmetric attacks that exhaust other types of
resources (e.g., memory), one can adopt the same approach, in this case, replicating
the memory intensive component into other machines that have spare memory.

5.2. The DeDoS booster
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Fig. 5.1. Example use case of the DeDoS booster. The software is built over Ser-
vice Boosters using Service Units (a), represented as a dataflow graph (b). Service
Units are then scheduled on the available machines (c). When a stage of the pro-
cessing pipeline becomes overloaded (d), the DeDoS booster disperses the attack by
generating additional instances on other machines (e).

As described in chapter 2, Service Boosters applications consist of a set of Service
Units (Figure 5.1). Each Service Unit is responsible for some particular functionality.
For instance, a web server might contain an HTTP Service Unit, a TLS Service Unit,
a page cache Service Unit, etc. (Figure 5.1a).

Related Service Units communicate with each other. For instance, HTTPS re-
quests may enter the system at a network Service Unit, be decrypted by the TLS
Service Unit, and parsed by the HTTP Service Unit. Collectively, Service Units form
a DataFlow Graph (DFG) containing a vertex for each Service Unit and an edge for
each communication channel (Figure 5.1b).
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The DeDoS booster relies on an external controller with visibility over all Service
Boosters runtimes on the cluster (Figure 5.1c). Local DeDoS boosters continuously
collects runtime statistics about the performance of each Service Unit. If they detect
that some Service Unit instances are overloaded (e.g., due to an unknown attack;
Figure 5.1d), they can contact the controller to request the creation of additional
instances of these Service Unit. The controller is responsible for placing these new
instances on machines where abused resources are still available (Figure 5.1e). Thus,
the data center can enlist all possible resources to tame high tail latency, not merely
the ones that happen to be “in the right place.”

5.2.1. Minimal Service Units. When designing an application over Service
Boosters, the question of defining the granularity and boundaries of Service Units
arises. While smaller Service Units can result in a more precise response during over-
load — since it allows the DeDoS booster to replicate only the bottleneck functions
— too small and numerous Service Units can result in unacceptable overheads be-
cause of the delay introduced on the execution path. This trade off has already been
unveiled in the past with, for example, the fall of mainframe computers and the rise
of microservices [156, 18].

The general approach Service Boosters advocates is based on the microservices
design [157]: Service Units split points are appropriate when there are loose couplings
between components, functional domains are clearly encapsulated, and individual
components are provably stables. Appropriately split Service Units are then dubbed
Minimal Service Units (MSUs).

For known performance bottlenecks, it is also advantageous to purposefully de-
marcate Service Units to most optimally respond to the potential overload. For
example, to protect against a SYN flood, the portion of the TCP stack that handles
TCP connection state could be isolated into its own MSU.

However, a key benefit of the DeDoS booster is that it does not require apriori
knowledge of the performance problems it defends against. Hence, in many instances,
programs may not be perfectly spliced. In such instances, MSUs may contain features
unrelated to the performance bottleneck, resulting in non-optimal resource allocation.
However, such duplication will often be preferable and very likely be far better than
näıve replication. In general, splitting software components following a microservices-
like programming paradigm will yield significant protection against tail latency while
incurring limited overheads, provided we correctly schedule each component. Empir-
ical measurements of these overheads in a number of application, constructed using
this design pattern, support this assertion (§5.5).

5.2.2. Inter-runtime communication. Communicating Service Unit instances
can reside on different machines. A Service Boosters runtime makes this transparent
to Service Units by injecting a bit of “glue code” that converts calls into a local
function call (if the callee is on the same machine) or a network packet (if the callee
is remote). Figure 5.2 pictures how multiple Service Boosters runtimes implemented
on Linux (Cf. §2.6) communicate.
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Fig. 5.2. Communication between two Service Boosters runtimes. The systems
relies on long lived connections to exchange control and application messages.

5.3. Resource allocation

To ensure that the applications meet their SLAs, DeDoS needs a way to make and
enforce resource allocations to MSU instances at runtime. DeDoS performs resource
allocation at two layers: each machine schedules MSU instances locally based on their
resource needs, whereas the external controller is responsible for decisions requiring
a global view, such as scaling-in MSU instances. To enable runtime adaption, DeDoS
runs a local agent that continuously monitors their local MSUs, detects local overloads
and periodically submits statistics and overload alerts to the controller. In addition,
they are responsible for handling the controller’s commands.

In this section, we describe the specific resource harvesting design of DeDoS.
5.3.0.1. Initial assignment. Initially, deployments use hints from the configuration

files to determine how many replicas of each Service Unit should deployed. Over time,
using the DeDoS Booster, the system scales to meet the load demand and respect
SLAs.

5.3.0.2. Cloning and merging. Local agents detect overloads through queuing de-
lay at MSUs. Abnormal queuing delays can happen when MSUs are processing outlier
requests such as an ADoS or legitimate but infrequent requests. To perform a scaling
decision, the local agent checks whether local resource usage — CPU, DRAM band-
witdh, DRAM amount, and file descriptors pool, are bellow a configurable threshold.
If yes, it simply replicates the target MSU locally. Otherwise, it issues a request
to the global controller for scaling the target MSU. The controller uses its global
view to identify a suitable runtime. In addition, the controller periodically checks
if, overall, runtimes are utilizing more than a configurable percentage of a resource
(e.g., memory) and some MSU type accounts for a configurable percentage of a run-
time’s utilization of that resource, in which case the controller will begin to clone
MSUs of that type. This latter policy targets the system’s bottlenecks by increasing
parallelization.
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Once the decision to clone is made, the controller picks a satisfying machine for
the new instance, favoring locality with the clone’s neighbors in the dataflow graph. A
local machine is best to minimize network communication. Once a machine has been
elected, the controller contacts the machine’s local agent to spawn the instance. The
controller also updates all the relevant routing tables to enforce the load balancing
policy in place for this MSU type. An attempt to clone will fail if it is not possible to
place the clone on any available runtime or if the same type of MSU has been recently
cloned.

The controller scales-in (removes) cloned MSU instances when they are no longer
needed. Two conditions must be met for an MSU to be removed. First, the last
runtime where a clone has been placed must report a normal queuing delay in the
last monitoring interval; second, the MSU type must not be significantly contributing
to more than a configurable percentage of a resource consumption on any runtime.
An attempt to remove will fail if an attempt to clone an MSU of that type was made
in the recent past (to protect against system oscillations), or if some configurable
amount of time has passed since the last removal of that type.

We set the following default parameters for DeDoS management policies: the
controller clones an MSU type if all runtimes are utilizing more than 40% of the
memory or file descriptor (FDs) pool, and the type accounts for at least 50% of
its runtime utilization of that resource; for removal, the MSU type must not be
contributing more than 40% of the memory or FDs pool on any runtime. Removal
fails if an attempt to clone an MSU of that type was made in the last 20 seconds, or
if less than 5 seconds elapsed since the last removal of that type or its dependencies.
Those parameters are based on our domain expertise of how our testbed performs.

5.4. Case studies

This section demonstrates the feasibility and applicability DeDoS by considering
three case studies: a web server; an existing userspace TCP stack; and an application
written using a declarative domain specific language [16] that has been translated
into a Service Units DFG.

Web server. Our first case study showcases a simple web server constructed as
five MSUs. Figure 5.3 pictures this appolication. The socket MSU accepts incoming
requests and steers them toward the Read MSU, which performs the TLS handshake,
deciphers data, and relays plaintext to the HTTP MSU. The HTTP MSU implements
NodeJS’s HTTP Parser [158]. Once the request is parsed, the HTTP MSU issues
a call to the database tier to retrieve some object file, then enqueues the request to
a Regex Parsing MSU, which uses the PCRE engine to parse it. The final HTTP
response is sent to the Write MSU, which wraps it in a layer of TLS and sends it
back to the client. The Service Unit uses OpenSSL version 1.0.1f for TLS support in
both Read and Write MSUs.

Importantly, with the exception of the socket MSU that polls on a set of sockets,
all of the web server’s MSUs are event-driven and non-blocking. To avoid having
to migrate socket states between machines, the controller enforces that the socket,
Read, and Write MSUs reside within the same Service Boosters instance for a given
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Fig. 5.3. A simple web server ported over Service Units

client connection. HAProxy [159] load balances client connections to socket MSUs
on DeDoS instances.

The web server leverages DeDoS’ fine-grained modular architecture to handle
overload. §5.5 demonstrates the system’s resilience against three ADoS attacks: TLS
renegotiation attacks [154], ReDOS attacks [19], and HTTP SlowLoris attacks [21].

Userspace network stack. The second case study consists of an existing software
project ported to run on DeDoS with minimal effort. PicoTCP [160] is an open-source
userspace TCP stack written in approximately 33, 000 lines of C code (as reported by
sloccount). PicoTCP is well-structured and written in a modular fashion, making
it easy to manually determine cut-points (i.e., to form MSUs). Figure 5.4 pictures
this application.

Standalone handshaking MSUs are split from PicoTCP. When a SYN flood at-
tack occurs, the TCP Handshake MSU is replicated into multiple copies on the same
or different machines. Load-balancing across these clones is achieved by using a con-
sistent hashing scheme within the PicoTCP MSU: based on a hash over the incoming
packet’s four-tuple (source and destination addresses and ports), Service Boosters per-
forms load-balancing by distributing the handshaking requests (in the form of SYN,
SYN/ACK, ACK packets) to the various TCP Handshake MSU instances. Packets
belonging to the same three-way handshake (e.g., the client’s SYN and ACK) are
routed towards the same TCP Handshake MSU, obviating the need to transfer state.

Given the modular nature of the PicoTCP code, separating the TCP stack into
separate MSUs was fairly straightforward. The bulk of the efforts lay in wrapping
PicoTCP’s “main loop” within an MSU to allow Service Boosters’s scheduler to exe-
cute the MSU according to its scheduling policy. The PicoTCP MSU was augmented
to re-inject SYN-ACKs generated by Handshake MSUs into the PicoTCP stack for
them to be sent back to the client, and code to restore TCP state received from
Handshake MSUs (for successful connections) into PicoTCP’s internal TCP state
data structure.

In summary only minor modifications were required to transform the monolithic
PicoTCP application into a DeDoS-enabled version in which handshake components
could be replicated on demand, both within the local machine and on remote DeDoS
instances. Overall, less than 0.1% of PicoTCP’s original code base changed.
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Declarative packet processing. The third use case is an application written in a
domain specific language that does routing (packet forwarding), written entirely as
a declarative networking [16] program. Declarative networking programs are writ-
ten in a variant of Datalog called Network Datalog (or NDlog). An NDlog program
consists of a set of rules, where each rule is of the form h :- b1,b2,..., bn, in-
dicating that a head tuple is generated so long as all body tuples b1, b2, . . . , bn
are available. For example, the rule packet(@Y,A,Data) :- packet(@X,A,Data),

Neighbor(@X,A,Y) results in all packets arriving at X being forwarded to neighbor
Y based on some attribute A (e.g., the packet’s header data). Declarative network-
ing has been adopted for network forensics, data center programming, and overlay
routing.

Since these programs have their roots in the database relational model, they can
be compiled into an Service Unit dataflow of relational operators. For example, the
body tuples are executed as a series of pair-wise database join operations, additional
filters in the form of selection operators, and the head tuple is generated as a projection
operator. The generated tuple may be sent to the same or different machine using
DeDoS. We find such automatic translation to be a promising method of adopting
existing applications to DeDoS.

5.5. Evaluation

This section aims to answer two high-level questions through several sets of ex-
periments: (1) do applications split into Minimal Service Units run with reasonable
overheads in normal operation, and (2) how well can the DeDoS booster mitigate
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high tail latency arising from adversarial workloads such as ADoS attacks, as com-
pared to whole-system replication? The experimental testbed consists of a cluster of
8 machines connected via a 10 Gbps switch in a star topology. Each machine has 8
1.80 GHz cores (with hyperthreading and DVFS disabled), 64 GB of memory, and
runs Linux kernel 4.4.0-62. A video demonstration of DeDoS booster is available
online [161].

5.5.1. Overheads. This section presents the overheads introduced by the De-
DoS runtime during normal operation through the applications described in §5.4
within and outside of DeDoS on a single server machine.
Web server: Figure 5.5 compares the performance of a DeDoS web server to a
standalone web server with the same implementation but compiled as a monolithic
application outside of DeDoS. The workload consists of HTTPS requests generated
by Tsung [48] at an exponentially distributed rate for a period of five minutes, with
a mean of 2500 requests per second (r/s). Latency is averaged over intervals of one
second. Figure 5.5 presents the results. The standalone webserver has mean latency of
43ms, and 1.8ms standard deviation. DeDoS’ webserver has a mean latency of 48.5ms
and 12.3 standard deviation. This accounts for a mean 10.5% overhead introduced by
DeDoS, which is caused primarily by the enqueuing and dequeuing of messages across
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Fig. 5.6. Connection latency for standalone PicoTCP and DeDoS-enabled
PicoTCP (“DeDoS”).

Service Units. Because in their current implementation, worker threads on DeDoS do
not perform work stealing from remote queues, there are some rare instances of MSUs
sitting idles while others are building a queue, hence the higher number of outliers
with DeDoS.
PicoTCP: The DeDoS-enabled version of uses a single worker thread on a single
runtime and has two MSUs: a handshake MSU and the remainder of the PicoTCP
stack as a separate MSU. The application is a simple echo server mirroring back
incoming requests.

The first metric of interest is connection latency, the time required to complete a
TCP handshake as measured by the client, measured over a 15-minute period. Dur-
ing this time, the client continuously creates new TCP connections at a steady rate,
sends (and receives) 32 bytes of data, and disconnects. Figure 5.6 shows the distri-
bution of connection latency for the vanilla and DeDoS-enabled versions of PicoTCP
under different client request rates. The DeDoS-enabled version incurs a modest 5.5%
increase in connection latency.

The second metric of interest is the throughput that both TCP stacks can achieve.
A number of different clients simultaneously access the echo server. Each client
repeatedly sends and receives 1024 bytes, with a 10ms pause between transmissions.
There is no significant difference between the throughput that both stacks can achieve.
PicoTCP and DeDoS both reached their maximum bandwidth of 57.66 Mb/s and
57.71 Mb/s respectively around 100 simultaneous connections and the throughput
remained similar for more than 100 simultaneous connections. (The absolute numbers
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Clients DeDoS Throughput Standalone Throughput
5 491.6 pkts/s 491.9 pkts/s
10 980.0 pkts/s 981.2 pkts/s

Tab. 1. Average throughput of declarative packet processing.

are low because PicoTCP is a user-space network stack designed for portability instead
of performance. It still eventually goes through the kernel. The goal here is to measure
the overhead of the DeDoS runtime.)

These results suggest that running applications within the DeDoS runtime does
not significantly change the throughput or the latency it can achieve.
Declarative packet processing. Finally, we run an experiment with the declarative
packet processing application. We use either five or ten clients that each send 100-byte
packets at a rate of 100 packets per seconds; as before, we compare a DeDoS-enabled
application to a standalone version that runs the same code, but outside DeDoS.
Table 1 shows our results, which confirm our findings from the previous experiments:
the throughput with DeDoS is only marginally lower (by less than 1%) than the
throughput of the standalone system.

5.5.2. Attack mitigation. The system will receive a set of ADoS — ReDOS,
TLS renegotiation, SlowLoris, SYN flood — and a volumetric flood attack to evaluate
the efficacy of DeDoS. The first attacks three are run against the webserver and the
latter two are on PicoTCP and an NDlog program respectively.

5.5.3. Attacks against webserver. The webserver is deployed on three ma-
chines while three other machines run instances of an in-memory database. All web
requests access the database, and HAProxy distributes HTTP and database requests.
The remaining two machines are used to generate legitimate (“good”) and attack
traffic respectively. To demonstrate the DeDoS Booster’s ability to defend against
changing attacks and reclaim resources, under dynamic traffic patterns, the experi-
ment is a two hours long run during which attacks’ duration are randomly distributed.
Good traffic is generated by Tsung and exponentially distributed, simulating diurnal
variations by setting Tsung’s distribution mean at 1500 r/s, and increasing by slices
of 500 r/s up to 3000 r/s, at which point it gradually decreases back down to 1500 r/s.
Tsung’s requests time out after 1s if they cannot connect. When no attack occurs,
clients experience an average latency of 50ms. Attack traffic is generated using an
in-house C client which generates malicious ReDOS and TLS renegotiation requests.
SlowLoris attacks are generated using an existing Python tool [49].

Figure 5.7 shows the main findings for different attacks on the HTTP servers for a
single run of the experiment than ran continuously for 2 hours. The top figure shows
response times for successful connections averaged every second, while the middle
figure presents the connection success rate during this experiment. The bottom figure
shows the number of MSU instances of a given type deployed on the system over time.
Attacks occur during the period colored in red. We compare Service Boosters and
the DeDoS Booster to two other techniques: (1) an approach that does not replicate
at all under attack (“standalone”), and (2) an approach that näıvely replicates an
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Fig. 5.7. Requests latency and success rate during TLS renegotiation, ReDOS,
and SlowLoris attacks on a web server running over Service Boosters, standalone
with no defense, and using a näıve replication defense strategy.

entire webserver to one of the database servers when under attack (“näıve”). Initially,
the Service Boosters’ webserver has 4 Read and 2 Regex MSUs on each of the three
starting machines.

During the entire course of the experiment, the DeDoS Booster is auto-piloting
without inputs from human users. It can accurately detect and react to the injected
attacks based on the resource allocation polices described in §5.3 without apriori
knowledge of the attacks. DeDoS can consistently and automatically decide on an
effective mitigation strategy against different types of attacks. Figure 5.7 shows that
the Booster consistently outperforms standalone and näıve approaches, and sustains
low latency and high response rate while standalone and näıve can only provide
limited or sporadic services.
TLS renegotiation attack: This attack consumes the victim’s CPU by having ma-
licious connections repetitively triggering TLS handshakes. Here, a single handshake
requires about 2.1ms computation time (we use a 2048-bits RSA key), and every
malicious request triggers 100 renegotiations before closing. During the first TLS
renegotiation attack in Figure 5.7, the attacker increases the strength of the attack
from 1 to 100 r/s over a period of 13 mins. At the start of the attack, standalone per-
forms better than DeDoS until CPUs get overwhelmed by attack requests (around 75
r/s); it increases the average latency for good requests to the order of seconds. Näıve
replication performs even worse and causes connection success rate to drop to almost
0% once the entire webserver has been replicated to the database machines. This is
due to paging that occurs on the database server as a result of the additional memory
footprint imposed by the cloned webserver. Even successful connections experience
latency on the order of tens of seconds.

During the attack, the DeDoS controller observes abnormal levels of pending
requests in the system, and gradually increases the number of Read MSUs from 12
to 39 (1 more on each original machine, plus 8 per database machine). Unlike näıve
replication, Read MSUs have a low memory footprint and do not cause paging on the
database machines. This results in average latency of 70ms for good requests during
attack.

Once the attack stops, the DeDoS controller observes that the conditions explained
in Section 5.3.0.2 are met, and reclaims resources by tearing down the cloned MSUs.
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The second TLS attack in Figure 5.7 shows the performance of DeDoS under a
steady state attack with 100 r/s instead of a gradual increase in attack strength.
Under this relatively high attack strength, CPU resources for standalone are quickly
overwhelmed, and connection success rate for good clients falls to 50% with 3s latency
on average. DeDoS applies the same policies for resource management, maintaining
39 Read MSUs, and while its performance drops momentarily, it manages to serve
good clients with an average latency of 70ms.
ReDOS attack: In this attack, each malicious request issues a complex regular ex-
pression operation that exploits a PCRE vulnerability [162], requiring approximately
100ms of computation time. The first ReDOS attack increases attack strength from
1 r/s to 200 r/s and lasts 9 mins. Similar to TLS renegotiation, standalone initially
does better than DeDoS until CPUs are overwhelmed by malicious requests. On the
other hand, DeDoS gradually increases the number of Regex MSUs (up to 27 new
instances) and maintains 100% success rate, but with an increased average latency of
150ms. There are much less variations in the number of Regex MSU than Read MSU
because of the nature of the workload: TLS handshakes are much shorter, and per-
formed over non-blocking I/O, while the regex parsing events cannot be preempted
by DeDoS. The second ReDOS attack is performed at a steady rate of 200 r/s over
11mins. Standalone clients almost instantly experience average latency on the order
of seconds after the attack is launched. DeDoS, while initially overwhelmed as well,
quickly recovers by spawning 27 new Regex MSUs, managing to keep the latency on
the order of tens of milliseconds.
HTTP SlowLoris: This attack targets the connection pool of the webserver by
exhausting the file descriptors (FDs) available for the process. The attack works by
opening a connection to the server, and slowly sending HTTP headers one after the
other, at such a pace that the server keeps each connection open for a significantly
longer time than usual. The attacker only has to send a number of concurrent re-
quests equivalent to the maximum number of FDs available to the server process to
deny service to legitimate clients. The kernels are configured to allow each process
to open 213 concurrent FDs (from an initial value of 210). The attack tool opens up
to about 41K concurrent connections to the webserver during 17mins. Standalone is
able to withstand the attack until the FDs limit is reached (in about 220 seconds).
Then the connection success rate quickly drops to about 3 r/s, and the good requests
experience a sharp increase in latency, since the webserver threads are kept busy with
processing HTTP headers that are continuously sent from malicious clients. DeDoS,
on the other hand, is able to spawn 22 new Read MSUs on each of the database
server, increasing its global file descriptors pool, and allowing it to sustain 100% suc-
cessful connection rate. Due to paging, näıve is unable to respond to a majority of
the connections.

5.5.4. Additional attacks. In addition to the attacks discussed on the web
server, this section discusses two more attacks and their mitigation using the DeDoS
Booster.
SYN flood attack: The SYN flood experiment consists of a number of “good”
(i.e., non-attack) clients accessing an echo server built on top of PicoTCP. Each
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good client attempts 10 requests per second, where each request establishes a TCP
connection, sends and receives 32 bytes of data, and then closes the connection. A
TCP connection is considered successful only if the handshake completes within 60
seconds. The SYN flood is launched after one minute of normal traffic, runs for
three minutes, and then stops. SYN floods are generated with hping3, with varying
intensity. The experiment continues for an additional two minutes (during which no
attack occurs) to observe the recovery period.

As a baseline, we first run the attack against standalone PicoTCP. PicoTCP
executes on a single thread within a single machine with the size of the connection
buffer set to 1MB, corresponding to 26,214 pending connections. We note that this
limit is significantly larger than the 1024 pending connection limit offered by default
on Linux. Table 2 shows the percentage of successful handshakes completed during
the full attack window.

Attack rate (SYNs per second) PicoTCP success percentage
1000 45.68%
2000 9.04%
3000 7.1%

Tab. 2. Percentage of successful TCP connections for PicoTCP during the attack
window.

We observe that a single instance of PicoTCP cannot keep up with increasing
attack strengths. For example, at 2000 SYNs per second, less than 10% of clients
could complete a three-way handshake.

In contrast, DeDoS can mitigate a SYN flood by cloning MSUs, potentially on
other hosts. The DeDoS-enabled version of PicoTCP consists of separate MSUs
for performing the handshake and for transferring data. Each instance of a Hand-
shake MSU is provided with a 1MB connection buffer. The PicoTCP MSU (the
non-handshake related portion of TCP) runs on a single machine that also hosts the
echo server. The booster uses three other physical machines to spawn a maximum
of three additional Handshake MSUs per machine. Varying the number of Hand-
shake MSUs (by manually overriding the controller’s actions) helps measure system
performance during the SYN flood.

The success rate of TCP handshakes during the interval between the first and last
instances in which a TCP connection failed, as observed by a good client, reflects the
steady state of the attack and avoids the “ramp up” period in which the attack has
not yet become effective.

The results show that the DeDoS Booster is able to provide superior service
throughout the attack. Figure 5.8 shows the connection latency of good clients during
a 2000 SYN/second attack. The second y-axis shows the average percentage of suc-
cessful TCP handshakes (“success percentage”) computed over a two-second interval.
PicoTCP (top graph) fails to service good requests as soon as the attack starts—the
percentage of successful TCP handshakes almost immediately drops to below 10%.
The few connections that are successful experience very high latency (first y-axis).
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Fig. 5.8. Handshake latency of good clients under a SYN flood (2000 SYNs/sec)
with standalone PicoTCP (top) and DeDoS with 3 Handshake MSUs (bottom).
Vertical lines denote the start and end of the SYN flood. The right y-axis plots the
good clients’ average percentage of successful TCP handshakes.

In contrast, with three cloned Handshake MSUs running on the same physical host
(bottom graph of Figure 5.8), DeDoS is able to achieve an average success percentage
of approximately 64% during the steady state of the attack and recovers quickly after
the attack ends. (The stratified “bars” in the figure are due to TCP retransmissions
and TCP backoff.)

Figure 5.9 shows the scalability of DeDoS and the improved response to various
SYN floods with increasing resources. For a given attack strength, DeDoS is able to
serve more legitimate requests as the number of handshake MSUs increases. Here,
Handshake MSUs are equally distributed across the cores on three physical machines.
Notably, we are able to completely mitigate the attack (as measured by successful
client TCP connections) for moderate attack rates of 1000 and 2000 SYNs/second
with four and seven MSUs, respectively.
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Declarative packet processing attack: This final experiment uses an attack
against the declarative packet processing application described in §5.4. The packet
processing application is setup with a large in-memory neighbor table, rendering näıve
replication too expensive in this case. The workload consists of a varying number of
clients that forward packets via our application. The attack rate increases by using
more clients to send more traffic. Figure 5.10 shows the throughput (pkts/s) that
can be processed by (i) a standalone implementation, (ii) a DeDoS-enabled applica-
tion with cloning disabled, and (iii) a normal DeDoS-enabled application. As before,
the results show that standalone and DeDoS achieve comparable throughput (which
indicates low overhead) but that cloning enables DeDoS to handle roughly twice as
many clients during an attack.

5.6. Takeaways

This chapter presented our last contribution to this thesis, a system that, using
Service Boosters’s primitives, can harvest the exact amount of resources needed to
mitigate high tail latency. Given the ability to monitor and manipulate individual
Service Units, the DeDoS booster can devise more efficient scaling strategies.

The next chapter will recapitulate our findings and enumerate several interesting
challenges for future work.
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CHAPTER 6

Future and Related work

This thesis proposed a new execution environment for cloud applications, Service
Boosters, offered as a library OS programmers can use to declare and annotate their
request processing pipeline. In addition to the base architecture, the thesis contributes
a real time anomaly detection engine able to spot requests about to increase tail
latency — before they do so. The thesis also contributes two Boosters for request
scheduling and resource harvesting, Perséphone and DeDoS. Both boosters exploit the
structure and annotation of the DataFlow Graph declared by Service Boosters users
to maintain good tail latency. Overall, Service Boosters supports the need for novel
abstractions between cloud applications and their underlying execution environment.

6.1. Future work

Several challenges to using Service Boosters and similar component-based designs
are not answered in this thesis. These are fundamental limitations from today’s
software design and should be addressed in future work.

I. Automatically composing a graph of Service Units. Currently, Service
Boosters requires users to declare a pipeline of Service Units and program individ-
ual event handlers, somewhat similarly to Apache Spark’s functional interface [163].
Ideally, programmers would only have to express the request processing pipeline in a
sequential fashion and the Service Boosters runtime would split it into Service Units.
Though some existing work tackle this challenge (c.f., the next section of this chapter),
the question of how to automatically decompose a sequence of functional units into
a graph of components for a given objective (resource utilization, maneuverability,
resilience to tail latency, etc.) is an open research problem. Specifically, this problem
has different answers whether we want to retrofit legacy applications or only support
new applications. We envision the answer to be at the intersection of programming
languages — through the definition of domain specific languages, compilers and in-
termediate representations — and distributed systems — through the definition of
new network and OS primitives.

II. State management. To be maneuverable at scale, Service Units need to either
be stateless, or have access to a high performance shared storage. At the microsecond
scale, this means carefully designing this storage to avoid overheads from acquiring the
right to modify the storage. Work such as Silo [164] and the underlying Masstree B-
tree structure [165] are interesting techniques for single nodes. Service Boosters also
requires efficient distributed techniques to operate at its intended scale. Efforts such
as S6 [166] are an interesting path forward, albeit limited to object storage. Designing
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a satisfying storage abstraction to expose application-semantics to the underlying
storage management layer within Service Boosters is still an open challenge.

III. Centralization. The Perséphone and DeDoS Boosters rely on a centralized
controller to harvest resources and dispatch requests. This is unlikely to scale well
to thousands of Service Boosters runtimes. Creating an efficient hierarchy of con-
trollers that retains good approximation for optimal algorithms is an open research
challenge. Specifically, as information needs to travel between controllers and each
controller is responsible for a subset of the entire infrastructure, the more controllers,
the less accuracy. We envision the solution to be at the intersection between OS
optimizations — such as to devise low-overheads information transfer mechanisms —
and distributed systems — through the design of concurrency protocols.

IV. Humans in the loop. Managing Service Boosters at scale still requires a lot
of human effort to design, maintain, and enhance the request processing pipeline.
Ideally, one would like Service Boosters to organically adjust to a target objective
functions and automate resource management. Fundamentally, this means designing
intelligent systems that can learn, for a given resource management predicate, all
the pieces of this predicate: metrics of interest, decision thresholds, and appropri-
ate sequence of actions. We envision the solution to leverage the Service Boosters
declarative abstraction and reinforcement learning techniques to learn predicates.

V. Bringing in the network. Applications usually have expectations about the
underlying network. Existing communication protocols are often all-include (e.g.,
TCP) or totally bare (e.g., UDP). As a result, programmers have to either build
their own protocol from the ground up, or resort to using over-featured protocols
— with an impact on performance. The design of fully modular and customizable
network protocols is an open research challenge in the continuity of Service Boosters’
aspirations. The question spawns interface design — what API is available for users?
— to distributed systems — how to reason about a physical network shared by a large
amount of network protocols? We explored some of these questions in the past [131]
and foresee a large impact from this vein of research.

6.2. Related work

This section goes over systems and ideas related to the Service Boosters architec-
ture. Sections 3.4 and 4.6 presented work related more generally to FineLame and
Perséphone.

Breaking down application in Service Units. Previous work has already show-
cased the benefits of breaking application monoliths in smaller components. Flight-
plan assists users disaggregating P4 programs in the dataplane [17]. Ignis [167] shows
that you can decompose applications into components that are individually scalable
and Lya [168] shows that you can get significant insights about application’s internal
behaviors by tracking events at the module boundary. Service Boosters proposes a
framework to capture components behavior and interactions, and expose these to the
underlying resource management layer.
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Function-as-a-Service and Micro-services platforms. Service Boosters is con-
ceptually related to the trend toward fine-grained granularity decomposition of func-
tions seen in FaaS platforms [169, 170, 171, 172]. Though Service Boosters also
provides more manageable components, notably for mitigating high tail latency, the
abstraction layer it targets is the operating system.

Other efforts exploiting application-awareness to improve tail latency. Robin-
Hood [173] improves tail latency by provisioning more cache to backends that affect
such latency. Minos [174] shards data based on size to reduce GETs variability
across shards. It would be interesting to integrate such techniques to Service Boosters,
specifically to broaden the application-OS abstraction and incorporate more advanced
inter-stage load balancing techniques.
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