
2104 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

NetEgg: A Scenario-Based Programming
Toolkit for SDN Policies

Yifei Yuan , Dong Lin, Siri Anil, Harsh Verma, Anirudh Chelluri, Rajeev Alur, and Boon Thau Loo

Abstract— Recent emergence of software-defined networks
offers an opportunity to design domain-specific programming
abstractions aimed at network operators. In this paper, we pro-
pose scenario-based programming, a framework that allows
network operators to program network policies by describing
example behaviors in representative scenarios. Given these sce-
narios, our synthesis algorithm automatically infers the controller
state that needs to be maintained along with the rules to
process network events and update state. We have developed
the NetEgg scenario-based programming tool, which can execute
the generated policy implementation on top of a centralized
controller, but also automatically infers flow-table rules that can
be pushed to switches to improve throughput. We evaluate the
performance of NetEgg based on the computational requirements
of our synthesis algorithm as well as the overhead introduced by
the generated policy implementation, and we study the usability
of NetEgg based on a user study. Our results show that our
synthesis algorithm can generate policy implementations in less
than a second for all policies we studied, and the automatically
generated policy implementations have performance comparable
to their hand-crafted implementations. Our user study shows
that the proposed scenario-based programming approach can
reduce the programming time by 50% and the error rate by
32% compared with an alternative programming approach.

Index Terms— NetEgg, SDN, programming-by-examples.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) holds the
promise of extensible routers that can be customized

directly by network operators. Major router vendors now
provide APIs (OpenFlow or vendor specific) that provide
various forms of extensibility for traffic steering, on-demand
network virtualization, security policies, and dynamic ser-
vice chaining. The enhanced programming interface of SDN
offers an opportunity to design domain-specific programming
abstractions for network operators to take advantage of the
flexibility to program network policies.

Manuscript received July 25, 2017; revised June 6, 2018; accepted
July 10, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor S. Uhlig. Date of publication August 27, 2018; date of current version
October 15, 2018. This work was supported by the NSF under Grant CNS-
1513679, Grant CCF 1763514, Grant ITR-1138996, and Grant IIP-1564730.
(Corresponding author: Yifei Yuan.)

Y. Yuan, R. Alur, and B. Thau Loo are with the Department of Computer and
Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA
(e-mail: yifeiy@cis.upenn.edu; alur@cis.upenn.edu; boonloo@cis.upenn.edu).

D. Lin is with LinkedIn, Sunnyvale, CA 94085 USA (e-mail:
dolin@linkedin.com).

S. Anil is with Bloomberg LP, New York, NY 10022 USA (e-mail:
siri.rao13@gmail.com).

H. Verma is with Intentionet, Seattle, WA 98104 USA (e-mail: harsh@
intentionet.com).

A. Chelluri is with Facebook, Menlo Park, CA 94025 USA (e-mail:
ani.chelluri@gmail.com).

Digital Object Identifier 10.1109/TNET.2018.2861919

To take advantage of this new wave of innovation, recently
proposed domain-specific languages or DSLs (e.g. declara-
tive networking [1], Frenetic [2], Pyretic [3], NetKAT [4],
NetCore [5], FlowLog [6], Merlin [7], FatTire [8]) make
it easier to program controllers with orders of magnitude
reduction in code sizes by raising the level of abstraction.

A key challenge that has yet to be addressed is providing
an intuitive programming abstraction that allows network
operators even with little programming experiences to program
their own protocols and policies, hence taking advantage of the
new programming interface.

Motivated by recent work on programming by exam-
ples [9]–[11], we investigate an alternative approach aiming at
providing network operators intuitive programming interfaces.
Our approach is based on synthesizing an implementation auto-
matically from example scenarios and providing a platform
whereby operators can observe the synthesized implementation
at runtime, and then tweak their input scenarios to refine the
synthesized program.

Our proposed approach is based on the observation that
network operators typically like to use examples such as timing
diagrams to design new network configurations and policies.
In most cases, these examples would be generalized into
design documents, followed by pseudocode and then finally
implementation. We aim to facilitate the entire process by
generating implementations directly from the examples them-
selves, hence giving the power of network programmability
to all network operators. While the focus of this paper is on
SDN settings, the approach is general and can be applied to
any network protocol design and implementation.

Specifically, this paper makes the following contributions:
Scenario-Based Programming Framework: We propose the

framework of scenario-based programming (Section IV),
which allows operators to specify network policies using
example behaviors. Instead of implementing a network policy
by programming, the operator simply specifies the desired
network policy using scenarios, which consist of examples
of packet traces, and corresponding actions to each packet.

Design and Implementation: We have developed the NetEgg
tool, including a synthesis algorithm (Section V), an interpreter
for executing policies, and a web-based graphical user inter-
face. Given the scenarios as input, our synthesizer automat-
ically generates a controller program that is consistent with
example behaviors, including inferring the state that needs
to implement the network policy, relevant fields associated
with the state and rules for processing packets and updating
states. The interpreter executes the generated policy program
for incoming network events on the controller, as well as infers
rules that can be pushed onto switches (Section VI).

Validation: We validate NetEgg by synthesizing SDN pro-
grams that use the POX controller directly from examples.
Our tool is agnostic to the choice of SDN controllers, and

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9089-580X

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2105

Fig. 1. A scenario describing the learning switch. In the scenario, a packet
is denoted by a 3-tuple: 〈incoming port, source MAC, destination MAC〉.

can also be used in non-SDN settings. We demonstrate
that using our approach, we are able to synthesize a range
of network policies using a small number of examples in
seconds (Section VII). The synthesized controller program
achieves comparable performance to equivalent imperative
programs implemented manually in POX (Section VIII).
Moreover, our user study (Section IX) shows that NetEgg can
reduce the programming time and the error rate compared with
programming in POX.

We vision NetEgg as a rapid prototyping platform and an
educational tool, where users can iterate through example
scenarios, observe runtime behavior to determine correctness,
and tweak their scenarios otherwise. NetEgg is correct and
consistent with respect to the input scenarios. Synthesizing
the input scenarios themselves based on high-level correctness
properties is an avenue of future work.

II. ILLUSTRATIVE EXAMPLE

To illustrate the use of NetEgg, we consider the example
where a network operator wants to program a learning switch
policy supporting migration of hosts on top of the controller
for a single switch. The learning switch learns incoming
ports for hosts. For an incoming packet, if the destination
MAC address is learned, it sends this packet out to the port
associated with the destination MAC address; otherwise it
floods the packet. To support migration of hosts, the learning
switch needs to remember the latest incoming port of a host.

To program the policy, the network operator simply
describes example behaviors of the policy in representative
scenarios, in the form of network timing diagrams. Fig. 1
shows a scenario described by network operators.

The Scenario: In this scenario, the vertical line denotes the
time line and the network operator describes example behav-
iors of the policy using three packets. The first packet arriving
on port P1 with source MAC address h1 and destination MAC
address h2 is flooded by the switch, since no port has been
learned for h2. The second packet from h3 to h1 should be
sent directly to the port P1, according to the port learned from
the first packet. The third packet from h2 to h3 should be
sent to the port P2, since the second packet indicts that h3

is associated with port P2. Note that instead of using real
port numbers and MAC addresses in the packet, the network
operator uses variables for each field. The variables stand for
a variety of concrete values.

Given this scenario, NetEgg automatically synthesizes the
desired program implementing the learning switch policy. The
synthesized program can be executed on the SDN controller,
as well as install flow table rules onto switches. As part of the
program generation, NetEgg automatically generates the data
structures and code necessary to implement the policy.

Network operators may further test the synthesized program
using existing verification and testing techniques, and refine

Fig. 2. NetEgg architecture.

the program if needed. As part of refinement, network opera-
tors simply illustrate new scenarios (e.g. obtained from counter
examples) to NetEgg, and NetEgg automates the refinement
by synthesizing a new program from the new set of scenarios.
We will demonstrate more use cases in Section VII.

III. NETEGG OVERVIEW

Fig. 2 provides a high-level overview of NetEgg. The net-
work operator describes example behaviors about the desired
network policy in timing diagrams, where each timing diagram
shows the behavior of the policy in a specific scenario (thus
we also refer to the timing diagrams as scenarios). The timing
diagrams can be drawn using our GUI or written in a simple
configuration language, which we will describe in Section IV.

Given all scenarios, NetEgg first checks whether there exist
conflicting behaviors among the scenarios. If two scenarios
conflict with one another, NetEgg displays the conflict to the
network operator. After the operator resolves all conflicts,
NetEgg tries to generate a policy described in the scenarios.

The generated policy consists of a set of state tables and a
policy table. State tables are used to remember the history of
policy execution (e.g., the learned port for a MAC address in
the learning switch example or the connection state for TCP
connections). The policy table dictates actions for incoming
network events and updates of state tables in various cases.

When executing the policy, the interpreter, sitting on top of
the controller, looks up the policy table for incoming network
events (e.g. packetin, connectionup), which determines state
table updates and actions to be applied to the network events.
Moreover, NetEgg automatically infers rule updates to the
data plane from current state of the policy execution, thus
reducing controller overhead and network delay. While NetEgg
is general to handle any network events, we focus on packetin
events in this paper in order to simplify our presentation.

Revisiting the learning switch example from the previous
section, we first describe the state tables that are generated by
our tool, before describing the policy.

State Tables: In our example, the learning switch needs to
remember whether a port is learned for a MAC address, and
if learned, which port is associated with the MAC address.
Hence, the learning switch needs to maintain a state table ST ,
which stores a state to indicate whether the port is learned
and a value (in this case the associated port number) for each
MAC address. See Fig. 4 for examples.

We design state tables in such a form in order to achieve a
reasonable balance between the expressiveness of the policy
model and also the efficiency of our synthesizer. Particularly,
compared with a standard key-value map, the state table uses
the additional state to explicitly indicate the number of cases
the policy should care about (e.g., there are 2 cases for the

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2106 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

TABLE I

THE POLICY TABLE FOR THE LEARNING SWITCH

learning switch while other policies may have multiple cases),
in order to support efficient policy synthesis (see Section V
for more detail).

Given input scenarios, our tool automatically derives how
many states need to be maintained in a state table, and what
values need to be stored as the value for a key. For the learning
switch example, NetEgg automatically infers the fact that for
a given MAC address macaddr, ST needs to keep two states:
state 0 indicates that the port associated with macaddr is not
learned, and state 1 indicates that the port is learned.

Policy Tables: The state table is manipulated by rules imple-
menting the desired policy. These rules are captured in a policy
table, as shown in Table I for the learning switch example.
We delay the discussion of its generation to Section V.

The policy table contains two rules, represented as the two
rows in the table. We extend traditional match-action rules
with additional state test and update in order to support stateful
policies. Thus, every rule has four components: match, test,
actions and update. The match specifies the packet fields and
corresponding values that a packet should match. In this exam-
ple, no matches need to be specified and we use ∗ to denote
the wildcard. The test is a conjunction of checks, each of
which checks whether the state associated with some fields in
a state table equals a certain state value. For example, the test
in the second rule has one check ST (dstmac).state=1, which
checks whether the state associated with the dstmac address
of the packet is 1 in ST . Note that we do not allow the check
of values in a state table in order to achieve efficient policy
synthesis. However, with this restriction, NetEgg can still
support a wide range of policies as shown in Section VII. The
actions define the actions that are applied to matched packets.
In this example, the action in the first rule floods the matched
packet to all ports and the action send(ST (dstmac).value) in
the second rule first reads the value (in this case, the port)
stored in ST for the dstmac address of the matched packet,
and sends the packet to that port. The update is a sequence of
writes, each of which changes the state and value associated
with some fields in a state table to certain values. For example,
the write ST (srcmac):=(1,port) changes the state associated
with the srcmac address of the packet to 1 in ST , and stores
the value associated with the srcmac address of the packet
to the port of it. These two rules correspond to two cases of
the learning switch: 1) When the destination port is unknown,
it floods the packet through all ports; 2) When the incoming
packet’s destination port is known, it sends the packet out
through the port associated with the destination MAC address.
In both cases, the state associated with the source MAC
address is set to be 1, and the incoming port for the source
MAC address is learned.

Interpreter: The interpreter processes incoming packets at
the controller using the policy table. The pseudocode of the
interpreter is shown in Fig. 3. The interpreter matches each
incoming packet against each rule in the policy table in order.
A rule is matched, if the packet fields match the match and

Fig. 3. The interpreter.

Fig. 4. An illustrative execution. (a) An example packet trace. (b) The initial
state table. (c) The state table after p1. (d) The state table after p2. (e) The
state table after p4.

all checks in the test of the rule are satisfied. The first
matched rule applies actions to the packet, and state tables
are updated according to the update of the rule. Moreover,
NetEgg automatically infers the rules that can be installed on
the data plane from the latest configuration of state tables. The
corresponding function is update_flowtable in the pseudocode.
We will describe policy execution in more detail in Section VI.

Example: Fig. 4 shows an illustrative execution of the policy
in Table I for the incoming packet trace in subfigure (a).
The purpose of this example is to illustrate how a policy
table is executed, and thus we assume that every packet is
processed on the controller. In Section VI we will describe
how to automatically infer rules to be installed onto switches.
Initially, all states in the state table ST are 0, and all values
are ⊥, meaning unknown, as shown in subfigure (b). The first
packet p1 is matched against each rule in Table I in order at
the controller. The first matched rule is the first rule, since p1

matches the match (∗) and the state of the field dstmac of
p1 in ST is 0, satisfying the check (ST (dstmac).state=0)
in test of the rule. Therefore, the rule applies the action
which instructs the switch to flood p1, and updates the state
table as in subfigure (c). The second packet p2 in the trace
matches the second rule in the policy table, since the state of
its dstmac is 1. The program sends p2 out to port 2, which
is stored in the state table associated with MAC address A.
Applying the update of the rule, we get the state table as in
subfigure (d). The third packet p3 matches the second rule in
the policy table, and the updated state table remains the same
and thus not shown here. The last packet p4 suggests that
the host with MAC A has migrated to port 3, and it matches
the second rule in the policy table and gets sent to port 1.
Subfigure (e) shows the state table after applying the update.
In Section VII, we will demonstrate other use cases including
the use of timeout events to keep soft state.

IV. NETEGG MODEL

In this section, we first describe the scenario-based program-
ming model of NetEgg, and explain how it allows the operator
to describe example network behaviors in representative sce-
narios. Second, we define the policy model, which includes
the model of state tables and policy tables. We will show how
to generate a policy from scenarios in the next section.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2107

Fig. 5. Scenario-based programming model.

A. Programming Language

NetEgg provides a configuration language for expressing
network timing diagrams (Fig. 5). In this language, variables
and fields of packets are typed. Examples of base types
we use are bool, PORT, IP_ADDR (set of IP addresses),
MAC_ADDR (set of MAC addresses). A packet-type consists
of a list of field names along with their types. In our example,
the packet-type consists of three fields and is given by 〈port :
PORT, srcmac : MAC_ADDR, dstmac : MAC_ADDR〉.

A (concrete) packet specifies a value for each field of type
corresponding to that field. A symbolic value of a type T is
either a concrete value of type T, or a variable x of type T.
A symbolic packet specifies a symbolic value for each field.

We use Act to denote the set of action primitives for
processing packets. For the action primitives with parameters,
the user can use either concrete values or variables of the
corresponding type.

In NetEgg, we provide a library that supports standard
packet fields and actions such as drop, flood, send(port) (send
to a port), modify(f,v) (modify the value of field f to v). Our
tool also supports user-defined packet-type using customized
field names and types, as well as user-defined actions. One
can generalize it by providing handlers for user-defined fields
and action primitives.

An event is a pair of a symbolic packet sp and a list of
actions [a1, ..al], denoted as sp⇒ [a1, .., al]. A scenario is a
finite sequence of events. A scenario-based program is a finite
set of scenarios. In our current implementation, we assume
that all packets appearing in a scenario-based program have
the same packet-type. However, one can easily allow different
packet-types in a scenario-based program.

Thus, the scenario of Fig. 1 can also be written as:

P1, h1, h2 ⇒ flood

P2, h3, h1 ⇒ send(P1)
P3, h2, h3 ⇒ send(P2)

A scenario is concrete if all the symbolic packets and
actions appearing in the scenario have only concrete values.
A concrete scenario can be viewed as a test case that describes
a specific sequence of packets coming to the network (in order)
as input and also its corresponding applied actions as output
of the desired policy. A scenario-based program with symbolic
scenarios can be viewed as a short-hand for a set of concrete
scenarios. This set is obtained by replacing each variable
by every possible value of the corresponding type with the
following requirements. First, a variable can only take values
that have not appeared in the scenario-based program. Second,
if the same variable appears in multiple symbolic packets and
actions in the program, then it gets replaced by the same value.
Third, different variables in a program get replaced by different
values. Thus, the symbolic scenario of Fig. 1 corresponds to
Πi=0,1,2(n−i)(l−i) concrete scenarios if the type MAC_ADDR

and PORT contain n and l distinct values, respectively. Thus,
the use of symbolic values allows one to concisely describe a
large set of concrete scenarios showing example behaviors of
the desired policy in different cases.

The language itself is simple and can be viewed more
as a configuration language rather than a general-purpose
programming language. We also build a visual tool that takes
as input scenarios drawn as actual network timing diagrams,
and generates the configuration.

B. Policy Model
A policy consists of a policy table along with state tables

that store the history of policy execution.
State Tables: A state table is a key-value map that maintains

states and values for relevant fields.
Let Tij be some base type appearing in the packet-type, S

be a state set with finitely many states, and the packet-type
be 〈f1 : T1,..,fk : Tk〉. A d-dimensional state table ST stores
a state in S and a value of type Tid+1 , for all keys of type
Ti1× ..×Tid

. Though we only allow one value per key in our
model, one may use multiple state tables if multiple values
need to be maintained.

The operations we allow on a state table are reads, checks
and writes. Let ST be a state table of type T1 × .. × Td →
S×Td+1, f1,..fd be field names of type T1,..,Td, respectively.
A read of ST indexes some entry in ST , and is of the
form ST (f1,..,fd). A check of ST checks whether the state
associated with some key is a particular state. Syntactically,
it is a pair of a read and a state, written ST (f1,..,fd).state=s,
where s ∈ S is a state. In our example, ST (dstmac).state=0
is a check with the field dstmac. The use of the state in state
tables together with the restriction that we can only check the
state allows us to develop efficient synthesis algorithm as we
will see in the next section. A write of a state table changes the
state along with the value associated with some key. A write
of ST is of the form ST (f1,..,fd):=(sv,fv). Here, sv is either a
state, or - representing no change. fv is either a concrete value
of type Td+1, - representing no change, or a field name of type
Td+1. In our example, ST (srcmac):=(1,port) is a write of ST
with the field srcmac.

We use the term configurations for the snapshots of state
tables. For example, the initial configuration of the state table
in our example maps every MAC address to (0,⊥) as shown
in figure 4(b). Here, we use ⊥ to represent the fact that
no value is stored. A read ST (f1,..,fd) for a packet p at
a configuration c returns the state-value pair stored in ST
for the key (p.f1, .., p.fd) at c. We use ST (f1,..,fd).state and
ST (f1,..,fd).value to denote the state and value in the returned
pair. A check ST (f1,..,fd).state=s is true for a packet p at a
configuration c if the state read from ST at the configuration c
is s. In the example in Fig. 4, ST (dstmac).state=0 is true for
p1 at the initial configuration (subfigure (b)) of ST . A write
ST (f1,..,fd):=(sv,fv) for a packet p writes the state-value pair
to the corresponding entry indexed by the read. Note that
if sv(fv, resp.) is -, the write does not write any state(value,
resp.) to ST , and if fv specifies a field name, the value of p.fv
should be written.

Policy Tables: Given a set of state tables T , a rule r based
on T has four components, namely, match, test, actions and
update. match is of the form 〈f1=v1,..,fk=vk〉, where fi is a
name of a packet field, and vi is a concrete value or a wildcard.
A packet p matches 〈f1=v1,..,fk=vk〉 iff vi is a wildcard, or
p.fi = vi for all i = 1 to k. The actions is a list of actions

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2108 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

TABLE II

AN INCONSISTENT POLICY TABLE

using action primitives in Act. In the case where an action
primitive accepts parameters, the parameters can be concrete
values or values read from state tables in T using reads.
test is a conjunction of checks and update is a sequence
of writes, where each check/write is of some state table
in T . As an example, last two rows in Table I are two rules.
A policy table based on T is an ordered list of rules, and every
rule is based on T .

A configuration C of a policy consists of all the configu-
rations of each state table in T , on which the policy table is
based. A packet p matches a rule at a configuration C iff p
matches match and every check in test is true for p at the
corresponding configuration in C. Suppose the first matched
rule for a packet p at a configuration C is r. Then actions
of r will be executed on p and every write in update of r
will be executed. We denote the execution for packet p as

C p/as−−−→PT C′, with C′ the new configuration, and as the
actions applied to p.

V. POLICY GENERATION

Given a set of scenarios describing a policy, our synthe-
sizer first checks if there are conflicts among scenarios. This
process is described elsewhere [23] and thus omitted due
to the space constraint. In this section, we focus on how
to generate a policy, consisting of a set of state tables and
a policy table, given a set of scenarios without conflicts.
We start this section by discussing the objective policies
NetEgg aims to generate. Then we present the synthesis
algorithm in details.

A. The Policy Learning Problem

First, we note that, since the input scenarios describe the
behaviors of the desired policy in representative scenarios, the
generated policy should be consistent with all the behaviors
described in all scenarios.

Definition 1 (Consistency): Given a concrete scenario
SC = [sp1 ⇒ as1, .., spk ⇒ ask], a policy table PT is

consistent with SC iff Ci−1
spi/asi−−−−−→PT Ci for i = 1, .., k,

where C0 is the initial configuration in which every state
table maps every key to the initial state 0 and a value of ⊥.
A policy table is consistent with a scenario-based program,
iff it is consistent with all the concrete scenarios represented
by the scenario-based program.

As an example, the policy given in Table I is consistent with
the scenario in Fig. 1. However, the policy in Table II is not
consistent with the scenario, since it floods the third packet in
the scenario instead of sending it to P2.

In addition to consistency, NetEgg also aims to generate a
generalized policy from input scenarios. Therefore, we also
try to minimize the number of rules in a synthesized policy.
To see how this heuristic can help to generate a general policy,

TABLE III

A CONSISTENT YET RESTRICTIVE POLICY TABLE

TABLE IV

AN EXAMPLE POLICY TABLE SKETCH

let us consider the policy table in Table III with 3 rules.
It can be verified that the policy is consistent with the scenario
in Fig. 1. However, this policy overfits the input scenario and
will not generalize to a fourth packet such as 〈P1, h4, h2〉,
because this packet would be flooded by the policy. On the
other hand, the desired policy in Table I only uses two rules,
and can handle the fourth packet mentioned above correctly.

We summarize the major computational problem as the
following policy learning problem.

Policy Learning Problem: Given scenarios SC1, ..., SCn,
the policy learning problem seeks a set of state tables T and
a policy table PT based on T , such that (1) PT is consistent
with all scenarios SCi; (2) PT has the smallest number of
rules among all consistent policy tables.

B. Synthesis Algorithm Overview

In order to generate a consist policy table, a naïve algorithm
is to enumerate all possible policy tables by increasing the
number of rules, and then check the consistency with each
enumerated policy table. The first consistent policy table is
the desired one. While this simple algorithm meets the two
requirements of the policy learning problem, however, the
exhaustive enumeration is prohibitively inefficient in practice
given the large number of policy tables.

To improve the efficiency of the algorithm, our key idea is
to summarize a large number of policy tables using a symbolic
representation called a policy table sketch (or sketch in short).
As an example, Table IV shows a sketch. In a sketch, actions
and parameters in update are represented using variables,
while match and tests remain concrete. By substituting
concrete values for the variables in a sketch, we can obtain
a concrete policy table from the sketch. Therefore, a sketch
naturally represents a large number of concrete policy tables.
In this example, if each variable takes 3 different values,
this sketch can represent 310 policy tables. Here, we keep
match and tests concrete in order to enable efficient search
for variables in actions and update as shown later.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2109

Based on policy table sketches, we improve the naïve
enumeration algorithm by enumerating all possible sketches
instead of concrete policy tables. Since a sketch may represent
potentially a large number of policy tables, our enumeration
can be significantly efficient. Now, given an enumerated
sketch, our algorithm further searches concrete values for
variables in the sketch in order to generate a consistent policy
table. In the worst case, all values for each variable need to be
searched, and we essentially enumerate concrete policy tables.
However, in practice we oftentimes only need to search values
for a small subset of variables by using efficient back tracking
heuristics, and thus skipping the checking for a large number
of potential policy tables. For example, when ax1 is not flood,
we can conclude that no matter what values are set for other
variables, we can not obtain a consist policy table from the
sketch. Therefore, we simply skip the search for other variables
when ax1 is not flood. Putting in other words, we can skip
the enumeration and consistency checking for a large number
of concrete policy tables.

Thus, our overall synthesis algorithm consists of two phases
as shown in in Algorithm 1. First, the synthesis algorithm enu-
merates sketches by increasing the number of rules. For each
sketch sketch , it invokes the procedure search_sketch([SCi],
sketch) to search concrete values for variables in the sketch
in order to generate a consistent policy table using the sketch.

Algorithm 1 synthesize({SCi})
1: for all sketch generated from generate_all_

sketches({SCi}) do
2: pt = search_sketch([SCi], sketch)
3: if pt is not NONE return pt

In the rest of this section, we first show how to enu-
merate sketches given all input scenarios (i.e., generate_
all_sketches({SCi}). Next, we show how to use back tracking
heuristics to efficiently search the values for variables in each
sketch (i.e., search_sketch([SCi], sketch).

C. Sketch Enumeration

Our algorithm generates a sketch by composing a list L
of matches together with a list of tests. Here, the list of
L can be naturally learned from the symbolic packets in the
input scenarios. However, we may not infer the list of tests
from the input scenarios. Therefore, our algorithm enumerates
all possible tests, and further infers all necessary update
to complete the sketch. The reason that we can efficiently
enumerate all possible tests is that we only allow the check
of states. To ease the presentation of our algorithm, in this
section we will assume that a rule in a policy table contains
at most one check in its test. However, our algorithm and
implementation handles the case of multiple checks.

Algorithm 2 shows how to enumerate sketches. First,
the algorithm infers the list L from the input scenarios (line 2),
and then enumerates all possible tests. The enumeration con-
sists of two parts. First, the algorithm enumerates the size s of
the state set used in the sketch (line 3) and then it enumerates
all possible reads constructed from all combinations of packet
fields (line 4). For the learning switch example, since all fields
used in the input scenario are port, srcmac, and dstmac, there
are 8 possible reads including ST1(port), ST2(port, srcmac),
... ST8(port,srcmac,dstmac). Note that we enumerate s first to

Algorithm 2 generate_all_sketch([SCi])
1: sketch_list = []
2: L = generate_match_list([SCi])
3: for all s = 1, ...,MAX do
4: for all read do
5: sketch = generate_sketch(L, read , s)
6: add sketch to sketch_list
7: return sketch_list

ensure that all generated sketches are ordered by their number
of rules (the larger s is, the more rules a sketch has). With the
match list L, enumerated read read and also the state number
s, the algorithm generates a new sketch by constructing all
components in each rule (line 5).

In the following, we first describe how to infer the list L
of matches, and then describe our algorithm to generate a
sketch from L, read and s.

Algorithm 3 generate_match_list([SCi])
1: L = []
2: for all packet sp = 〈fi=vi〉 in every scenario SCi do
3: m ← 〈fi=mi〉, s.t. mi = vi if vi is a concrete value else
∗

4: insert m to L
5: sort L
6: return L

Generate Ordered Match List: Given the input scenarios,
we can naturally learn a list of all matches from the packets,
shown in Algorithm 3. As defined in our scenario-based
programming model, a symbolic packet represents a set of
concrete packets, which is obtained by replacing symbolic
values with concrete field values. Therefore, Algorithm 3 gen-
erates a match for each symbolic packet in the scenarios by
replacing symbolic values using ∗ (line 3). After all matches
are learned from the input packets, the algorithm needs to sort
the list L such that no match on the top completely covers
some match below it (line 5). This ensures that each symbolic
packet can match its corresponding learned match. Note that
for two generated matches which are partially overlapping
with each other, we can order either one above the other.

Generate a Sketch: Given the match list L, the read read
used in test in the sketch, and the state set size s, we generate
a sketch by composing L with all possible checks generated
from read and a state ranging from 0 to s− 1. The algorithm
is shown Algorithm 4. For each match match in L and
each state number l, the algorithm constructs a rule using
match and the check read .state = l (line 8). In addition,
the algorithm also needs to fill in all other sketch variables. For
the action, the algorithm simply introduces a fresh variable.
However for the update, the algorithm needs to consider all
possible ways to update the state table by constructing all
necessary writes (line 6 and 7). For the example in Table IV,
since the read is ST (dstmac), we need to consider ST (srcmac)
and ST (dstmac) as shown in the table (Here we intentionally
ignored the effect of the order of writes for the simplic-
ity of presentation. However, we handle the order in our
implementation.).

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Algorithm 4 generate_sketch(L, read , s)

1: sketch = []
2: let read be ST (f1,..,fk)
3: for all match match in L do
4: for all l = 0, ..., s− 1 do
5: update = []
6: for all read ST (f1′,..,fk′) s.t. fi′ and fi have the same

type do
7: add ST (f1′,..,fk′):=(sx, ux) to update, with sx, ux

being fresh variables
8: r ← (match, (read .state = l), ax, update), with ax a

fresh variable
9: add rule r to sketch

10: return sketch

D. Sketch-Based Search

Using the sketch, we can search concrete values for sketch
variables, with the goal that the obtained policy table is
consistent with all scenarios. To search for a consistent policy
table, we simulate the run of the policy table and perform a
backtracking search algorithm over necessary sketch variables.
The algorithm is shown in Algorithm 5.

Algorithm 5 search_sketch([SCi], sketch)

1: stack = []; V = {}; ST = new state table
2: for all scenario SCi do
3: clear ST
4: for all events ej in SCi do
5: let r = (match, test , ax, update) be the first matched

rule
6: if ax not in V then
7: V [ax]← drop; stack.push(ax)
8: if V [ax] is consistent with ej then
9: for all x in update s.t. x not in V do

10: x←-; stack.push(x)
11: apply update
12: else
13: while stack is not empty do
14: x = stack.pop(); v = V (x); V .remove(x)
15: if getNextValue(x, v) then
16: V (x)← getNextValue(x, v)
17: stack.push(x)
18: restart from line 2
19: return NONE
20: return pt obtained by substituting values in V for vari-

ables

The algorithm maintains the needed state table, a stack of
sketch variables together with a map V storing the values
assigned to the variables. Whenever a sketch variable is
assigned a value, it ensures that the sketch variable is pushed
to the stack. For each symbolic event in every scenario,
the algorithm checks consistency of the first matched rule’s
actions (line 8) (if the action is not assigned a value, then
initialize it first as in line 7). If the action is consistent with
the event, the algorithm continues to apply the update of the
rule, which updates the maintained state table (We may first

initialize all sketch variables in update before the update can
be applied, as in line 9, 10). However, whenever inconsistency
encountered (line 12), the algorithm needs to backtrack. This
procedure involves identifying the top most sketch variable
that has new values to be searched, assigning the next possible
value to it, and then restart consistency checking (line 13-18).
Note that the range of values each sketch variable can take
is determined by the sketch and scenarios. For example,
if (sx, ux) appears in some write, the values of sx can only
range from {0, .., s − 1, -}, where s is the size of state set
used to generate the sketch; and ux can only range over -,
field names and concrete values appearing in the scenarios.
It is similar for variables ax’s appearing as actions. If the
algorithm has searched all values for all sketch variables on
the stack, we can conclude that no consistent policy table exist
for this sketch (line 19); otherwise the algorithm returns the
first found consistent policy table (line 20).

E. Additional Heuristics

In addition to the basic synthesis algorithm described above,
the synthesizer has implemented other heuristics.

Lazy Initialization: Algorithm 5 initializes sketch variables
and pushes them to the stack as soon as applying update
of the matching rule. This eager initialization could push
irrelevant sketch variables to the stack and increase the search
depth. For example, the variables sx2, ux2 in Table IV are
not used when checking consistency for any symbolic packet
in Fig. 1, and hence irrelevant to the consistency checking.
Thus, the synthesizer takes a lazy initialization heuristic. That
is, only when an uninitialized sketch variable is read from
state tables, the synthesis algorithm initializes it and pushes it
to the stack.

Post Processing: After synthesizing a consistent policy,
the synthesizer applies additional post processing to the policy
table in order to simplify the policy table. These includes:
(1) If a rule in the policy table is not matched by any symbolic
packet in the input scenarios, this rule can be removed;
(2) The synthesizer removes writes in each rule’s update,
if they do not change the state table; (3) When multiple rules
can be merged into one without causing inconsistency, the
synthesizer will merge these rules.

VI. POLICY EXECUTION

Given the synthesized policy, our tool uses the interpreter to
process packets on the controller. As described in Section 3.3,
the interpreter simply iterates through all rules in the policy
table and picks the first matched rule for the incoming packet.
Then it updates all state tables based on the update of the
matched rule, and instructs the switch to apply the action of
the rule to the packet.

While processing packets on the controller is sufficient for
executing the policy, it is not practically efficient and degrades
the performance of the network. In this section, we show how
the tool infers flow table rules which can be installed onto
switches, thus reducing the overhead of controller and delay
of packet delivery.

Our key observation is the following theorem.
Theorem 1: A packet can be handled on switches if and

only if handling this packet on the controller does not change
any state tables.

Indeed, if a packet p is handled on switches, the controller
will not be aware of the packet and thus the state tables

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2111

remain unchanged. On the other hand, if p is sent to the
controller for execution and the updated state tables remain
the same as before, we know handling p on switches would
not affect future packets execution. Therefore, it is sufficient
and necessary to install rules on switches for the packets whose
execution will not change current configuration of state tables.

Based on this observation, we have implemented a reactive
installation approach which installs flow table rules that only
match necessary fields. Moreover, to keep the installed rules up
to date, we update installed rules when the policy configuration
changes, and remove invalid rules on switches. Note that, one
can also infer flow table rules in a proactive way based on
this observation. We leave the implementation of proactive
approaches to future work.

Algorithm 6 update_flowtable(p)
1: let rule r be the matched rule for p in the policy table
2: if r does not update state tables or the updated state tables

remain unchanged then
3: match← 〈fi1=p.fi1 ,..,fik

=p.fik
〉, for all field fij appear-

ing in the policy table
4: add match→ r.actions to the flow table, if the actions

aj applied to p by r is supported by the switch
5: for all installed rule match′ → [a′

1, .., a
′
l] in the flow table

do
6: let p′ be a packet matches match′

7: let rule r be the matched rule in the policy table for p′

8: if r does not update state tables or the updated state tables
remain unchanged then

9: update the installed rule to match′ → r.actions, if the
actions aj applied to p by r is supported by the switch

10: else
11: remove the installed rule from the flow table

Algorithm 6 shows the installation strategy. First the algo-
rithm checks whether the matched rule r for p will change
the configuration of state tables. The rule r will not change
the configuration, if r does not have writes, or the updated
states and values remain the same as the old ones (line 2).
If executing p would not change the configuration, the algo-
rithm installs a flow table rule match → [a1, .., al] onto the
switch, where match specifies the values for fields related to
the policy, and aj’s are the actions that should be applied to
p (line 3-4). The algorithm also needs to check whether pre-
viously installed rules are still correct. For this, the algorithm
repeats a similar process for each installed rule (line 6-14).

Example: Revisit the example in Fig. 4. By the interpreter’s
algorithm shown in Fig. 3, the first packet is processed on the
controller, and the state table is updated to the one shown
in subfigure (c). Applying Algorithm 6, the matching rule r
for p1 would be the first rule in the policy table shown in
Table I. Since port 2 is already remembered for the srcmac A,
r would not change the state table. Therefore, a flow table
rule fr1 = 〈port=2,srcmac=A,dstmac=B〉 →flood, which
matches the port, srcmac and dstmac of p1 is pushed down to
the switch. After processing the second packet p2, the state
table is updated as in subfigure (d) and a flow table rule
matching p2 can be pushed down. Moreover, the algorithm
checks the installed flow table rule fr1. Since now p1 would
match the second rule in the policy table and the applied action

Fig. 6. Scenario-based program for the learning switch.

TABLE V

THE POLICY TABLE FOR THE LEARNING SWITCH

to p1 is different from the installed flow table rule, the action
of fr1 is updated to send(1).

VII. USE CASES

In this section, we demonstrate scenario-based programming
for four policies. For each policy, we will show the packet-type
we use, the scenarios that can be used to synthesize the desired
policy, and the policy table generated from the scenarios.
To this end, we manually validate that the synthesized policy is
the correct policy. One can also formally verify the correctness
of the generated policy against logical specifications using
control plane verification tools such as Vericon [12] and
Nice [13]. We plan to explore light-weight verification tools
for the custom policy abstraction in the future.

A. Learning Switch

First, we revisit our motivating example. Recall that we can
program the learning switch application for a single switch
using a scenario in Fig. 1. Now we show how to adapt the
scenario to program the learning switch for a network. That
is, the policy needs to maintain the port of each switch for
hosts. To program this policy, we need a field specifying which
switch the packet is located. Therefore, we use the packet-
type 〈switch : SWITCH, port : PORT, srcmac : MAC_ADDR,
dstmac : MAC_ADDR 〉. For the scenario, we simply add the
switch field to each symbolic packet in the scenario in Fig. 1.
This modified scenario suffices for NetEgg to synthesize
the network-wide learning switch policy. The scenario and
synthesized policy table is shown in Fig. 6 and Table V.

B. Stateful Firewall

Now, we show how to use scenarios to program stateful
firewall policies inductively.

First Firewall: First, we consider a stateful firewall which
protects hosts connecting to port 1 by blocking untrusted
traffic from port 2. The firewall should allow all outbound
packets from port 1, and only allow inbound packets from
port 2 if the sender of the packet has received packets from
the receiver before. For this policy, we use the packet-type
〈port:PORT, srcip:IP_ADDR, dstip:IP_ADDR〉. We start by
giving two of the most intuitive scenarios shown in Fig. 7.
In the first scenario, the switch blocks the traffic from port 2,

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 7. Scenario-based program for the 1st stateful firewall.

TABLE VI

THE POLICY TABLE FOR THE 1ST STATEFUL FIREWALL

Fig. 8. The modified scenario for the 2nd stateful firewall.

TABLE VII

THE POLICY TABLE FOR THE 2ND STATEFUL FIREWALL

and the second scenario demonstrates the case where the fire-
wall allows the traffic from port 2. Notice that while the first
packet in scenario 1 and the second packet in scenario 2 are
identical, the applied actions are different. This demonstrates
again the key difference between scenarios and traditional
rules. It turns out that these two scenarios are sufficient to
generate the desired policy, shown in Table VI.

Second Firewall: Now suppose we want to specify a policy
such that it allows inbound traffic if the sender has received
packets from any protected hosts before. One may notice that
the policy should maintain a state for each host, instead of a
pair of hosts. Using the scenario-based programming, we can
simply adapt scenarios from Fig. 7 and change the dstip of
the second packet in scenario 2, as shown in Fig. 8.

The synthesized policy maintains a 1-dimension state table,
and is shown in Table VII.

Third Firewall: While we mostly focus on packetin events,
NetEgg can be generalized to handle arbitrary events. In this
use case, we will demonstrate how to use fields in sym-
bolic packets to handle user-defined network events. Suppose
we want to further implement a policy such that inbound
traffic is allowed until a timeout event indicates that the
sender expires. For the policy, we need to handle a time-
out event and the expired host ip specified in the event.
We can use a packet-type 〈event:EVENT, eventip:IP_ADDR,
srcip:IP_ADDR, dstip: IP_ADDR〉. Here, the field named
event specifies the type of the network event, and the field
named eventip specifies the expired host. These two fields are
set by the corresponding field handlers. For this policy, we can
add one more scenario exhibiting the behavior of timeout, as
in Fig. 9. The first symbolic packet is similar to above, but
since this is a packetin event, its eventip field is not applicable
(we use - to denote its value). The second symbolic packet

Fig. 9. The added scenario for the 3rd stateful firewall.

TABLE VIII

THE POLICY TABLE FOR THE 3RD STATEFUL FIREWALL

Fig. 10. Scenario-based program for the TCP firewall.

is the timeout event, which specifies that host h2 is expired.
Since the controller does not need to apply any actions to this
event, we use nop for its action. The third packet from host h2

now gets dropped. Scenario 1 and Scenario 2 can be adapted
similarly from Fig. 7 and Fig. 8 respectively.

Given the three scenarios, the desired policy can be synthe-
sized, as in Table VIII.

C. TCP Firewall

In this use case, we use scenarios to program the TCP
firewall that tracks the state transition of TCP handshake
protocol, and only allows packets that follow the protocol. We
use the packet-type that contains 5 fields: 〈flag:TCP_FLAG,
srcip:IP_ADDR, dstip: IP_ADDR, srcport: TCP_PORT,
dstport: TCP_PORT〉.

We first specify two scenarios describing two allowed packet
traces by the TCP firewall in Fig. 10. A trivial policy which
allows all packets would be generated. Next, we add two
scenarios describing packets which should be denied by the
firewall. Checking the policy, we find an undesired behavior
of the generated policy, which allows the second packet in
scenario 5. We add the correct behavior as in scenario 5, and

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2113

TABLE IX

THE POLICY TABLE FOR THE TCP FIREWALL

TABLE X

NETWORK POLICIES GENERATED FROM SCENARIOS. #SC IS THE

NUMBER OF SCENARIOS USED TO SYNTHESIZE THE POLICY,

#EV IS THE TOTAL NUMBER OF EVENTS IN SCENARIOS,

TIME IS THE RUNNING TIME OF THE SYNTHESIZER

the synthesizer generates the desired policy. The generated
policy table is shown in Table IX, and the state table maintains
states for each tuple of srcip, dstip, srcport and dstport.

VIII. PERFORMANCE EVALUATION

We have developed the NetEgg tool (including all compo-
nents in Fig. 2) in Python, as well as a web-based graphical
user interface. We evaluate the performance of NetEgg along
three dimensions: (1) the efficiency of NetEgg in policy
generation for a range of SDN policies, (2) the performance
and overhead of the synthesized policies, and finally, (3) cor-
rectness of the flow table rule installation strategy.

A. Policy Generation

We survey recent literature on SDN policies, collect a range
of SDN policies, and then use NetEgg to implement these
policies [12], [14], [15]. Table X summarizes our results.

Fig. 11. Response time.

We report the total number of events in the scenarios used
to program each policy, the number of scenarios, and the
computation time of the synthesizer to generate the policy
from scenarios.

We make the observation that NetEgg can generate a wide
range of SDN policies considered in literature efficiently. In all
examples, it requires no more than 402 ms for the synthesizer
to generate a policy, which allows real-time interaction with
the users. We also notice that programming in NetEgg using
scenarios can be concise. All of the policies are expressed in
less than 5 scenarios, with up to 10 events in total. Our user
study (described in Section IX) also confirms our findings.

B. Policy Execution

NetEgg uses the policy table as the policy abstraction, and
a generic interpreter to execute the policy table. Unlike hand-
crafted implementations which can be customized to policies,
generic execution of our abstraction of policies may incur
additional overhead. We evaluate the generic execution engine
of NetEgg using a combination of targeted benchmarks and
end-to-end evaluation.

1) Cbench Evaluation: We first use Cbench [16], an SDN
controller performance testing tool, to evaluate the perfor-
mance of policy implementations on NetEgg.

Experiments: We evaluate the response time and throughput
of NetEgg. For response time, we emulate one switch in
Cbench, which sends one packet-in request to the controller as
soon as it receives a reply for last sent request. The response
time corresponds to the time between sending out a request
and receiving its reply, which hence includes the execution
time of policy implementations. We evaluate the throughput
using a number of switches. For comparison, we also evaluate
the policies’ implementations in POX.

Results: Fig. 11 shows the response time for the policy
implementations in POX and NetEgg. We note that in all
cases, the differences in response times between the POX and
NetEgg versions are within 12%. In the case of MAC learning
and stateful firewall, the differences are negligible (<1%). For
throughput, we measure the number of requests that the MAC
learning policy can handle. When saturated using 20 switches,
the NetEgg implementation handles 1098 requests per second,
while POX handles 2484. We leave as future work to explore
how to further improve the throughput via parallelization
techniques. However, as we will see later, the end-to-end
performance is not significantly degraded.

2) End-to-End Performance: Our next set of experiments
aim to validate that the synthesized implementation closely
matches the hand-crafted implementation on end-to-end per-
formance for network applications such as HTTP.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 12. HTTP connection time.

Fig. 13. The network topology for the Firewall++ assignment. The network
has a single switch with interface 1 connected with the CS department and
interface 2 connected with the Internet. The controller (top-right box in the
figure) needs to be programmed to implement the Firewall++ policy.

Fig. 14. Effects of flow table rule installation.

Experiments: We emulate a fattree topology [17] in Mininet,
which consists of 20 switches and 16 hosts. We setup a HTTP
server on one host, and run httperf on all other hosts as clients.
Httperf sends HTTP requests from the clients to the server, and
measures the HTTP connection time for each request, which is
the time between a TCP connection is initiated and it is closed.
We run httperf with different rates of sending requests, and the
same number of connections (e.g. at rate 5 request/second,
httperf issues 5 requests per client). Each run starts from the
initial network state. On the controller side, we run the MAC
learner policy using POX and NetEgg.

Results: Fig. 12 reports the average connection time over
all 15 clients. The x-axis is the rate of HTTP requests. As
expected, the connection time under the NetEgg implementa-
tion matches closely to that under hand-crafted POX imple-
mentation. These results suggest our synthesized implementa-
tion is able to achieve comparable end-to-end performance as
hand-crafted implementations. This also further verifies that
execution of our policy abstraction incurs small overhead, and
our flow table rule installation is efficient.

C. Rule Installation

To achieve realistic performance, our interpreter infers and
installs flow table rules. We validate the correctness of our
rule installation strategy using emulation-based experiments.

Experiments: We run the synthesized MAC learner policy
on the controller, and emulate a simple topology with a single
switch connected with 300 hosts in Mininet [18]. We partition
these hosts into two groups, with 150 hosts per group. Every
host in a group sends 100 ping messages to another host in
the other group with 1 message per second. For comparison,
we run the set of experiments under two settings, one with
flow table installation and one without.

Results: We plot the average RTT for all ping messages
over time in Fig. 14. The red line corresponds to the policy
implementation without installing flow table rules. This imple-
mentation has a high RTT consistently over time, due to the
fact that every packet is sent to the controller. The blue line
corresponds to the case with installation. We observe that only
the first message experiences high latency, and subsequent
messages has significantly smaller RTT below 0.1 ms. This
fact suggests that our installation strategy is able to infer
flow table rules from the first incoming packet-in event, and
correctly install the rules onto the switch. Hence, subsequent
packets are all processed by the switch.

IX. USER STUDY

To evaluate the usability of our approach, we conducted user
studies centered around the following questions:

• Q1: Can NetEgg reduce the error rate of programming
SDN policies?

• Q2: Can NetEgg reduce the programming time?
• Q3: How well does the user interact with NetEgg?
In the following subsections, we first describe our user study

design, followed by our results.

A. User Study Design

We conduct the user study among masters/PhD students in
the School of Engineering within our university, given that
they are readily available to us. Given that NetEgg is also
geared towards an educational tool, these students represent
the primary users of the tool. Since most students were not
proficient in recently proposed high-level SDN programming
languages such as Pyretic and Kinetic, we compare NetEgg
with POX, a popular SDN controller based on Python.

We divide students into a NetEgg group and a POX group.
Since POX is based on Python, we require all users in the POX
group to be proficient in Python to ensure the quality of the
programming task. However, since NetEgg does not require
any programming experience, we have not imposed any pro-
gramming knowledge constraints on the NetEgg group. At the
end, 15 users are in the NetEgg group and 9 users in the POX
group. All users reported no SDN programming experience
before, and all users except for one in the NetEgg group have
taken classes in networking or distributed systems – they are a
good proxy of actual network operators, given their knowledge
of networking but not the SDN programming background.

POX is a mature software while NetEgg is still in develop-
ment stage. Prior to this study, we carry out three additional
user studies on NetEgg (on 21 additional students), mostly to
iron out any bugs of NetEgg and provide feedback on the UI
design before our actual study. We exclude these 21 students
from the study results since they worked on earlier version of
NetEgg with some bugs, though the general observations are
similar even if they are included.

Programming Assignment: We asked the users to program a
stateful firewall application (called Firewall++) to protect an

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2115

Fig. 15. The CDF of the programming time for NetEgg and POX.

internal network (i.e. the CS department) from the Internet in
the network topology shown in Fig. 13. We chose the firewall
application because of its importance and wide deployment in
today’s networks, and also its simplicity in the functionality.

The requirement of Firewall++ was described as the fol-
lowing rules to the users:

0. The firewall should allow any non-IP traffic.
1. All UDP traffic from the Internet are dropped.
2. All UDP traffic from the CS department network to the

Internet are allowed to go through.
3. All TCP traffic from the CS are allowed to go through.
4. SSH packets (i.e. TCP packets with dstport 22) coming

from the Internet are blocked.
5. TCP traffic from any host A in the Internet at TCP port

P to any host B in the CS at TCP port Q is allowed if B sends
TCP traffic using TCP port Q to A at TCP port P before;
otherwise the TCP traffic from the Internet should be dropped.

To test the users’ programs, we provided the users with a
script that automatically tested their programs in 5 different
test cases, corresponding to rule 1-5 described above. The
rule 0 is tested along with these test cases. This test script
runs the controller with the policy program synthesized from
user’s scenarios or coded in POX, and emulates the network
in Fig. 13 using the network emulator Mininet [18]. In each
test case, the script instructs hosts in the emulated network to
send traffic to the network. When testing each case, the script
displayed a short description of the test case, and only showed
to the user PASS or FAIL after testing finished.

Setup: Before the user started programming, we first gave
a 20-minute tutorial to both groups on the basics of SDN
programming. This tutorial covered a brief introduction to
SDN, step-by-step illustration on how to use NetEgg/POX
to program the example learning switch policy, and finally
the description of the Firewall++ programming assignment.
We also prepared an instruction on the usage of NetEgg,
highlighting the usage of how to create new scenarios and
how to add events into a scenario. Since POX is widely used
and well documented, we referred the users to the detailed
official POX instructions [19], [20].

To help users focus on the programming of Firewall++ in
POX, we prepared a program template where the user only
needs to implement the body of the function of handling the
events triggered by the packets sent to the controller.

B. Results

We present the results based on both the logs from the UI
instrumentation and the surveys with the users.

Q1: Error Rate: We observe that NetEgg reduces the error
rate of programming the SDN policy. We collect all users’

Fig. 16. The CDF of the number of scenarios for NetEgg.

Fig. 17. The CDF of the lines of code for POX.

final policy programs, and consider a policy program to be
correct if it can pass all 5 test cases. For the NetEgg group,
all users’ final policy programs are correct. However, for the
POX group, only 6 (67%) users’ programs are correct, while
the incorrect programs only pass 4 test cases.

Q2: Programming Time: We observe that NetEgg reduces
the programming time by 50% on average. Fig. 15 shows the
CDF of the programming time for both groups. In particular,
every marker in the figure corresponds to a user’s program
and a cross marker in the POX line denotes the fact that the
corresponding user’s policy program is incorrect. On average,
the NetEgg group took 73 minutes for the Firewall++ assign-
ment. The minimal and maximal were 28 and 120 minutes.
In contrast, the POX group took 146 minutes on average. The
minimal and maximal were 76 and 213 minutes. This includes
the users who did not pass all test cases. When excluding these
users, the average programming time for the POX group is
128 minutes, NetEgg still reducing 43% programming time.
In short, the results are encouraging: the NetEgg group used
significantly less time while achieved much higher correct rate
compared with the POX group.

Program Size: In addition to the programming time, one
typically used metric to measure the programming effort is the
program size (i.e. lines of code, or LoC). However, it is hard
to compare directly the program sizes between NetEgg and
POX, given that the scenario-based programming approach
does not have a notion equivalent to LoC. Thus, we use the
number of scenarios to approximate the size of a NetEgg
project. Fig. 16 and Fig. 17 show the CDF of the number
of scenarios and LoC for NetEgg and POX. On average,
the NetEgg group used 7.2 scenarios (with 1.32 events per
scenario), and the average LoC of POX programs is 61.6.
As an interesting comparison, we manually programmed this
policy in Pyretic, and the LoC is 30. Though this comparison
should not be viewed as a quantitative one given the reasons
explained above, we do believe that qualitatively speaking,
NetEgg allows a smaller program size compared with POX.

Q3: User’s Interaction With NetEgg: We logged a user’s
scenarios each time she built the policy program by calling
the NetEgg synthesizer, in order to understand the users’ inter-

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

2116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 18. The number of scenarios for representative users along with time.

TABLE XI

SUMMARY OF INTERACTION PATTERNS WITH NETEGG

action with NetEgg. Fig. 18 exhibits the number of scenarios
along with the time line for representative users in the NetEgg
group. To ensure that this figure reflects the user’s progress in
the user study, each marker in the figure corresponds to a
unique build of a user (i.e. at least one scenario is different
from previous build).

We observe three patterns of the users’ interaction with
NetEgg: smooth interaction (SI), back-and-forth edits (BFE),
and stuck edits (SE). Table XI summarizes the number and
percentage of users in each category.

The SI pattern consists of fairly smooth interaction with
NetEgg. For example, see user4 (red line) in Fig. 18. At the
beginning, user4 quickly added 2 scenarios in the first
20 minutes, and then incrementally added more scenarios until
he got a correct program (recall all NetEgg users succeeded in
passing all test cases). This pattern demonstrates the advantage
of NetEgg’s approach: It allows the user to adaptively demon-
strate the desired SDN policy’s behaviors and the synthesized
program gradually converges to the desired one. We find
that most of the NetEgg users’ interactions (9 users) have
similar patterns to this one. Their average programming time
is 58 minutes, 40% of the average POX programming time.

The BFE pattern (user10, green line; user5, black line) has
the following feature. The users were able to use scenarios
to demonstrate the policy’s behavior, however, they were not
sure whether their scenarios demonstrated the correct behavior
of the policy, and ended up removing some scenarios from
the project. For example, at the 63rd minute, user10 deleted
3 scenarios and then added some more new scenarios. The
similar behavior is also observed at the 40th minute and 41st
minute for user5, as well as the 36th minute for user10. After
talking with the users, we find that they were confused of
the use of symbolic values, and sometimes misunderstood
a scenario as a list of rules. We believe NetEgg would
achieve much smoother interaction with these users if the
concept of scenario-based programming was well conveyed.
As user10 told us, he could have finished this assignment
in 10 minutes if he had resolved the confusion sooner. For
this category, the average programming time is 86 minutes.

The SE pattern (e.g. user1, blue line in Fig. 18) shows that
some users were able to use multiple scenarios to demonstrate
the example behaviors of the policy. However, instead of
describing new behaviors using more scenarios, they tried

Fig. 19. The CDF of the number of unique builds for NetEgg.

to modify existing scenarios to tweak the synthesized policy
program (e.g. from 13th minutes on for user1). They told us
that they thought “scenarios” as “rules”, and thus attempted
to figure out how the synthesized program was generated
from the “rules”. This phenomenon is not unique to NetEgg,
but shows a fundamental challenge of the programming-by-
examples approach: How to improve the user’s visibility of the
synthesizing process, and guide the user to make high-quality
examples to increase the user’s confidence on the synthesized
program [21]. We plan to address this challenge in the future
work. We find 4 (27%) users in this category, and they finished
the assignment in 102 minutes on average.

Our surveys also confirm some of our findings. A user
thought NetEgg intuitive and easy to use:“the tool has a small
learning curve and is quite intuitive …it is probably easier
to use than a programming language.”. Another user also
gave a positive review:“I am very clear about what I am
doing when I use the interface, and know exactly how the
packets are handled under what situations.” On the other hand,
the user also said he “may get confused about how to define
variables (symbolic values)”.

Though NetEgg performed differently for users in the three
categories, we find that NetEgg allows rapid iterations for all
users across the three categories. Fig. 19 shows the CDF for
the number of unique builds (i.e. if the user built a project
without any changes, we do not count it) across all users.
On average, a user performed 13 builds in the NetEgg user
study. That is 1.7 builds every 10 minutes. Since each build
was different for a user, this metric approximates the iter-
ation rate for each user. Unfortunately, we could not find
a similar metric for POX, since Python does not require
build/compilation.

X. RELATED WORK

This paper extends our early version [22] with a user study
to evaluate the usability of the proposed approach.

SDN Programming Languages: SDN domain-specific lan-
guages [2]–[8], [24] make programming policies easier using
high-level abstractions. Our approach is different – we target
at designing intuitive abstractions for network operators who
can take advantages of their domain expertise and generate
examples for our tool.

Programming by Examples: Our work is motivated by
related work in the formal methods community in program-
ming by examples. References [9]–[11] implement finite-
state reactive controllers from specification of behaviors.
Reference [25] generates string transformation macros in
Excel from input/output string examples. Reference [26] uses
both symbolic and concrete example to synthesize distributed
protocols.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

YUAN et al.: NETEGG: SCENARIO-BASED PROGRAMMING TOOLKIT FOR SDN POLICIES 2117

Our work is similar in spirit to above works, but technically
different. Our input examples and target program are designed
specific to the SDN domain, and have different characteristics,
which require different synthesis algorithms.

Policy Abstractions: Recent work proposes new abstractions
of policies based on state machines [14], [15], [27]. These
work shows the state machine abstraction benefits from fast
execution on data plane [14], [27], and conciseness of pro-
gramming [15]. Our abstraction of policy tables is similar in
spirit to these state machine abstractions and thus can benefit
from the advantages of previous work. But however, our work
focuses on providing an intuitive programming framework
which can generate policies directly from examples.

XI. CONCLUSION

In this paper, we explore the design and implementation
of scenario-based programming that automatically generates
network policy implementations from example scenarios.

We observe that NetEgg is expressive and can support
a wide range of policies at reasonable overhead compared
to imperative implementations. Our user study shows that
programming in NetEgg is intuitive and concise, and can
reduce both the programming time and error rate compared
to alternative approaches. This approach lends itself naturally
to rapid prototyping and shortening the design/implementation
iteration cycle, as well as SDN programming education.

NetEgg is designed for state-oriented policies, and does not
suit well for objective-oriented policies, such as shortest-path
routing and traffic engineering. We leave the exploration of
programming such policies using scenarios to future work.

Moving forward, we plan to carry out a user study to
gather feedback from a larger pool of users. We also observe
that NetEgg is slightly cumbersome for supporting policies
that depend on stateful aggregate values, for example, take a
particular action if a threshold is met. We plan to explore the
combination of imperative languages with NetEgg, or using
NetEgg with a database query language for enabling such
complex policies. We plan to explore the use of formal
verification techniques to check scenarios against high-level
properties. Finally, while the paper focuses on SDN polices,
the programming model is not restricted to SDN, and we plan
to apply this approach to other settings, for example Internet
and wireless routing policies.

REFERENCES

[1] B. T. Loo et al., “Declarative networking,” in Proc. CACM, 2009,
pp. 87–95.

[2] N. Foster et al., “Frenetic: A network programming language,” in Proc.
ICFP, 2011, pp. 279–291.

[3] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software-defined networks,” in Proc. NSDI, 2013, pp. 1–14.

[4] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,” in
Proc. POPL, 2014, pp. 113–126.

[5] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. POPL,
2012, pp. 217–230.

[6] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, “Tierless
programming and reasoning for software-defined networks,” in Proc.
NSDI, 2014, pp. 519–531.

[7] R. Soulé et al., “Merlin: A language for provisioning network resources,”
in Proc. CoNEXT, 2014, pp. 213–226.

[8] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Proc. HotSDN, 2013,
pp. 109–114.

[9] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-
ming Using LSC’s and the Play-Engine. Berlin, Germany: Springer-
Verlag, 2003.

[10] D. Harel, “Can programming be liberated, period?” Computer, vol. 41,
no. 1, pp. 28–37, Jan. 2008.

[11] D. Harel, A. Marron, and G. Weiss, “Behavioral programming,” in
Proc. CACM, vol. 55, no. 7, pp. 90–100, 2012.

[12] T. Ball et al., “VeriCon: Towards verifying controller programs in
software-defined networks,” in Proc. PLDI, 2014, pp. 282–293.

[13] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A NICE
way to test openflow applications,” in Proc. NSDI, 2012, p. 10.

[14] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in Proc.
HotSDN, 2014, pp. 377–378.

[15] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” in Proc. NSDI, 2015,
pp. 59–72.

[16] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in
Proc. HotICE, 2012, p. 10.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM, 2008,
pp. 63–74.

[18] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. HotNets, 2010,
Art. no. 19.

[19] POX Wiki. Accessed: Mar. 24, 2017. [Online]. Available:
https://openflow.stanford.edu/display/ONL/POX+Wiki

[20] Openflow Tutorial. Accessed: Mar. 24, 2017. [Online]. Available:
http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial

[21] M. Mayer et al., “User interaction models for disambiguation in pro-
gramming by example,” in Proc. UIST, 2015, pp. 291–301.

[22] Y. Yuan, D. Lin, R. Alur, and B. T. Loo, “Scenario-based programming
for SDN policies,” in Proc. CoNEXT, 2015, Art. no. 34.

[23] Y. Yuan, “High-level programming abstractions for network policies,”
Ph.D. dissertation, Dept. Comput. Inf. Sci., Univ. Pennsylvania, Philadel-
phia, PA, USA, 2016.

[24] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc.
SIGCOMM, 2013, pp. 87–98.

[25] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proc. POPL, 2011, pp. 317–330.

[26] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim,
M. M. K. Martin, and R. Alur, “TRANSIT: Specifying protocols with
concolic snippets,” in Proc. PLDI, 2013, pp. 287–296.

[27] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful openflow applications inside
the switch,” in Proc. ACM SIGCOMM, 2014, pp. 44–51.

Yifei Yuan received the Ph.D. degree in computer and information science
from the University of Pennsylvania in 2016. He is currently a Post-Doctoral
Researcher of computer and information science with the University of
Pennsylvania.

Dong Lin received the Ph.D. degree in computer and information science from
the University of Pennsylvania. He is currently a Staff Software Engineer with
LinkedIn.

Siri Anil received the M.S. degree in embedded systems from the Univer-
sity of Pennsylvania in 2017. She is currently a Software Developer with
Bloomberg LP.

Harsh Verma received the M.S. degree in computer and information science
from the University of Pennsylvania. He is currently a Software Engineer with
Intentionet.

Anirudh Chelluri received the M.S. degree in embedded systems from the
University of Pennsylvania in 2018. He is currently a Production Engineer
with Facebook.

Rajeev Alur received the Ph.D. degree in computer science from Stanford
University in 1991. He is currently a Zisman Family Professor of computer
and information science with the University of Pennsylvania.

Boon Thau Loo received the Ph.D. degree in computer science from the
University of California at Berkeley in 2006. He is currently a Professor of
computer and information science with the University of Pennsylvania.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 26,2021 at 01:37:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

