
Automated Detection and Mitigation of Application-level Asymmetric DoS Attacks

Henri Maxime Demoulin, Isaac Pedisich, Linh Thi Xuan Phan, Boon Thau Loo

University of Pennsylvania

ABSTRACT
This paper presents a novel integrated platform for the automatic

detection and mitigation of denial-of-service (DoS) attacks in net-

worked systems. Recently, these attacks have evolved from simple

flooding at the network layer to targeted, application-specific asym-

metric attacks. Because of this trend, existing techniques—which

rely primarily on network classification at the edge or core routing

devices—are becoming ineffective. Our platform integrates machine

learning with fine-grained application-level performance metrics

and monitoring statistics at the software’s components to achieve

precise traffic classification for detecting application-specific at-

tacks in real time. When an attack is detected, the platform will

then automatically isolate suspicious traffic by routing it to sepa-

rate component instances with a fixed resource reservation, thus

preventing it from interfering with the rest of the system. Our evalu-

ation using a range of asymmetric attacks shows that our detection

technique is highly effective and that the close-loop integration of

real-time detection and traffic isolation can deliver substantially bet-

ter quality-of-service for good users in the presence of attacks than

the default mitigation using dynamic scaling of resource alone.

CCS CONCEPTS
• Security and privacy → Denial-of-service attacks;

1 INTRODUCTION
Denial-of-service (DoS) attacks are a persistent threat in the Internet

ecosystem. Recently, these attacks have evolved from the traditional

volumetric attacks to complex application-specific asymmetric at-

tacks [15, 19, 20]. Defending against the latter type of attacks is

particularly challenging for at least two reasons: First, they require

only a small volume of traffic to bring down a specific resource

at the victim’s endpoint, thus increasing their stealth potential

in the midst of large volumes of legitimate traffic. Second, since

fraudulent application layer packets do not necessarily translate to

(detectable) problematic patterns at the network level, it is difficult

to differentiate them from legitimate traffic by edge or core routing

devices, which are computationally constrained and cannot per-

form complex intrusion detection [10]. As a result, existing DoS

detection techniques—which rely primarily on traffic classification

at the edge or core routing devices [10, 12, 22, 23]—are becoming

ineffective against these attacks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SelfDN 2018, August 24, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5914-6/18/08. . . $15.00

https://doi.org/10.1145/3229584.3229589

In this paper, we solve the above challenge based on two key

insights: first, as these attacks target some resource(s) at the ap-

plication level, run-time monitoring statistics about the resource

use of the application and the system can provide good metrics

for distinguishing potential adversarial behaviors from normal be-

haviors. Second, since asymmetric attacks typically target specific

components in the application stack, their detection is much easier

if monitoring information is available at component-level granu-

larity. For instance, a TLS Renegotiation attack, which exploits an

asymmetry in the SSL/TLS protocol, will exercise CPU time con-

sumption by the component responsible for the TLS handshake

functionality [8], which will lead to a substantial increase in the

CPU resource use at the TLS component but not at others.

To enable detection using component-level run-time information,

we build a platform that can be used to develop and deploy software

as fine-grained components, then monitor them at runtime. Such

decomposed design pattern is increasingly adopted for applications

ranging from data analytic to edge computing [1, 2, 4, 5, 7], and are

foreseen to be useful abstractions for cloud deployments [14]. Due

to the modular nature of the platform, automated statistics collec-

tion can be performed at the component’s boundary, thus relieving

programmers from the burden of heavily instrumenting their code

to identify attacks. In addition, fine-grained resource allocation and

isolation policies can be applied at individual components instead of
at the full software stack, thus enabling better resource utilization—

and hence better quality of service for legitimate users—during

attacks.

However, the explosion in the number of components has dire

consequences for attack detection: as a set of components is often

maintained by a different engineering team than the one respon-

sible for the operation of the entire application, it is common that

operators do not possess a sufficient domain expertise of each in-

dividual component to evaluate how various resources should be

consumed by legitimate traffic. Accurately distinguishing attack

and legitimate traffic means being able to make sense of a linearly

increasing volume of monitored data, and understanding which

metric discriminates the traffic best. Therefore, decomposed plat-

forms have a critical need for automated solutions allowing feature

selection and anomaly detection at the component level.

To make a step toward the automated management of decom-

posed platforms, we build a supervised policy composition engine

on top of our prototype, and evaluate how well it can perform

feature selection for a representative set of application-level asym-

metric DoS attacks and legitimate traffic surge. In addition, we

evaluated the platform capability to enforce traffic isolation dur-

ing the event of a yet unseen attack, by using an isolation policy

composed with the engine. We evaluate the quality of service pro-

vided to legitimate traffic in presence of this policy compared to

a default cloning policy. Overall, we present a concrete example

of a closed feedback-loop decomposed platform, which automates

the detection and mitigation of application level asymmetric DoS

attacks and integrates human input to sharpen its accuracy.

36

https://doi.org/10.1145/3229584.3229589

SelfDN 2018, August 24, 2018, Budapest, Hungary Demoulin et al.

Section 2 presents the overall architecture of our platform. Sec-

tion 3 details the policy composition engine in our platform. Sec-

tion 4 studies the classification abilities of the engine across a set

of attacks, and demonstrates how we can use the system to per-

form automatic traffic isolation of a yet unseen attack. We conclude

by discussing related work, our ongoing research, as well as the

challenges we faced in implementing our solution.

2 DESIGN
2.1 Execution model
Figure 1 shows the overall architecture of our platform, which

supports the deployment and run-time resource allocation of appli-

cations as a set of fine-grained components (shown as circles of the

dataflow graph in each node). Application developers wrap their

components’ code into a main handler function, which consumes

events from a data queue. The platform provides a default queue

admission control mechanism, which can be configured for each

different component (e.g., a hard limit on the number of items al-

lowed inside the queue), as well as the ability to define customized

queuing policy for components. For message passing, components

can either use a default serialization protocol, or implement their

own to define the structure of a component’s payload.

At startup, a description of the application’s dataflow is given

to a centralized controller, which deploys instances of components

as threads of a local runtime processes (one per node). Runtimes

continually listen for requests from the controller (such as compo-

nent instance addition or deletion). They are responsible for setting

up and controlling the routing of messages between components

(as described by the application dataflow). Local components com-

municate through IPC, while remote ones use a long lived TCP

connection setup between each runtime process. In normal opera-

tions, packets are directed toward the next component instance in

the pipeline that has the smallest buffer occupancy by default. In

addition, the controller defines the resource allocation policy to be

enforced at runtime. Those can be derived from rules produced by

the policy composition engine (for instance, how many instances

of a component should be deployed on the cluster), or manually

defined heuristics (for instance a greedy resource allocation mech-

anism based on component’s resource consumption).

Local runtimes are also in charge of collecting, aggregating, and

reporting monitoring data to the controller. Table 1 describes the

set of statistics collected by the system. We retrieve some of them

using getrusage() (CPU time, page faults, etc), and other directly

from the routing module of our framework (e.g. arrival rate at a

component and buffer length). In addition to those, the platform’s

API allows programmers to register application-level statistics for

collection by the runtime, and subsequently make those available

for policy composition. Statistics are collected at a configurable

time interval. Rather than sampling an average of this interval, the

system builds a dynamic histogram of the values. More precisely,

this means that for each reporting interval, we report the values

of a configurable amount of percentiles of the metric distribution.

For example in our experiments, we collect the minimum value,

25th percentile, median, 75th percentile, and maximum values. The

controller formats and inserts collected statistics into a database

Name Description

Request
req_lifetime Total time spent in the system

req_enqueues Number of enqueues across all components

req_cpu Amount of CPU time consumed

req_fds Number of file descriptors opened

Component
com_enqueues Total number of enqueues

com_mem Virtual memory consumed

com_queue Buffer length

com_drops Packets dropped from the buffer

com_states Number of concurrent states maintained

com_throughput Request throughput

com_ing_rate Ingress rate

com_wall_time Wall time for request processing

com_idle_time Wall time between two executions

com_exec_time Time spent in execution

com_total_time Time spent in execution across all requests

com_usr_time User-space fraction of CPU time

com_sys_time Kernel-space fraction of CPU time

com_fds Number of FDs used

com_max_rss Maximum resident set size

com_min_faults page faults not involving disk I/O

com_maj_faults page faults involving disk I/O

com_vol_ctxsw Voluntary thread yields

com_invol_ctxsw Involuntary thread preemption

Table 1: Statistics collected at runtime

for future use by the policy composition engine, which we describe

in the next section.

2.2 Automated Mitigation
Our platform supports a variety of mitigation techniques, config-

ured through policy tables that map entities to rules and actions.

Entities for which actions can be taken are sets of application com-

ponents, or requests currently sojorning in the system. Policies

are systematically enforced at runtime at different points in the

pipeline, either by the centralized controller, or the local runtimes.

Where to enforce a policy is primarily based on which information

is required to do so. For instance, determining the placement of

a new component instance often requires knowledge of resource

consumption across the cluster, whereas determining if a request

should be admitted at a component’s queue can often be done

locally.

As an example, consider a default entry in the table, which spec-

ifies that the controller should attempt to clone any components

whose queue length is greater than 0. Such a rule is made with

the assumption that the system is provisioned to sustain an ex-

pected arrival rate — in which case components’ queues should not

grow. Another example is the isolation policy which we describe

in our evaluation (section 4.2), which stipulates that any IP which

requests have been consuming more than a certain threshold of

CPU time, learned in a supervised fashion, should be flagged for

temporary quarantine. This policy is systematically evaluated by

local runtimes when requests are enqueued to a component.

In our current prototype, the action type and the granularity at

which policies operate (for example, all components of a given type,

any component, etc) are defined manually by users alongside the

workload class label and the action type. Table 2 gives an example of

policy table. Tables are pushed on local runtimes via the controller’s

37

Automated Detection and Mitigation of App-level Asym. DoS Attacks SelfDN 2018, August 24, 2018, Budapest, Hungary

Local Runtime

Resource
Allocation

Policy
Controller

Node 1

Database

Local Runtime

Operator

(system
statistics)

GUI

Policy
Composition

Policy
Composition

Node n

deploy status
report

update
policy

query statistics

label data

Figure 1: Architecture of our closed-loop feedback platform

API, either in an automated fashion by the policy composition

engine, or manually by a user.

2.3 Supervised rule learning
The policy composition engine is in charge of generating entries

in the policy table in a supervised fashion. It can integrate the

operator’s knowledge of the system to label training sets, and plug-

in with an analytic library to train models of varying complexity.

For example, if the operator is only able to recognize that an attack

occurred, she would apply a binary label (“attack”, “good”) to the

datapoints, regardless of the attack type. On the other hand, if she

is able to distinguish between memory and CPU bound attacks, as

well as legitimate flash crowds event, she would apply a multiclass

labeling to the dataset. She can then request the engine for the

most discriminant features and threshold to generate an anomaly

detection rule.

Figure 1 describes the learning workflow in our prototype. (i) A

human operator observes the behavior of her application over time

through a standard monitoring dashboard, and has access to the en-

tire set of features monitored by the platform. (ii) Having observed

that one or many attacks occurred, she labels the period of attack to

the best of her abilities, and queries the policy composition engine

with the labels, a set of entities to train a model on, the entries to

the policy table she wishes to fill, and a degree of precision (the

k features she wants to extract) (iii) The engine performs feature

selection, in a fashion we describe next, and fills in all the entries

in the table which workload class were in the set provided by the

user, using the k predicates it learned from the training set. (iv) The

engine returns a confusion matrix to the user, which can either

validate or refuse the automated deployment of the new entries on

the platform.

3 POLICY COMPOSITION ENGINE
The engine has access to all the events which occurred in the ap-

plication since its startup. It does expose an API which allows an

operator to label slices of the data, and query the best set of dis-

criminant for the labels she provided. We implemented the engine

using python scikit [18]. Our prototype first remove features with

zero variance from the training set, then performs a two level cross-

validation method exploiting the degree of knowledge the user have

on her application. The k features requested and their threshold

are then used to complete the policy which is then pushed on the

controller and/or local runtimes. We explain our choice for Decision

Tree and our validation method next.

3.1 Decision Tree
We select Decision Tree in our prototype because of several reasons.

(i) Its ability, through information gain, to reveal how informative

each feature is for attack characterization. (ii) The cost of execution

of a Decision Tree is logarithmic in the number of samples used

for training (which we expect to be quite large for any long-lived

application. In our current setup, an hour worth of data accounts

for about 600 MB). (iii) It has the ability to perform multi-class

classification. Indeed, we expect that over time, the human operator

will discover more and more workload classes she will want to in-

corporate in her labels, and deploy increasingly refined mitigation

policies. (iv) Its ease of interpretation: analyzing the selected fea-

tures can be easily done by a human, contrarily to other non linear

feature selection techniques such as auto-encoders. Interpretability

is particularly important to understand the nature of the vulnera-

bility in the target application component. (v) Its extensibility to

Random Forests and Boosted Forests, which can help increase the

robustness of the engine in the future.

3.2 Feature selection
First, the engine automatically removes features with zero vari-

ance across all the training sets. Because such features do not vary

during the execution, they will not be informative for supervised

classification.

The learning engine then performs a grid search over various

depths of decision trees as well as increasing complexity of cross-

validations depending on the user’s query. If the user simply asks

for a binary classification, the engine immediately performs a 10-

fold cross- validation, making sure that for each fold each class

sample is properly weighted to avoid class imbalance. If the request

is for multi-class, the engine trains a classifier for each class and

select the one with the best average training error after 10-fold cross

validation, following the one-versus-all method. We downsample

with elimination the “rest” classes to avoid class imbalance with

the “one” class.

The engine then returns a confusion matrix summarizing the

performance of the best tree, which depth is always set the tree’s

depth to be k , the number of features requested by the user. In

addition, the engine returns a set of rules predicate corresponding

to the requested class labels. For each entry to be filled in the

policy table, there are k predicates which represent a path from the

root of the best tree to its leaves. The learning engine then uses

the platform’s controller API to deploy the learned policy table’s

entries to the runtimes.

4 EVALUATION
We performed a series of experiments to evaluate the effectiveness

of our platform. Our evaluation aims to investigate (i) how insightful

is a traffic isolation policy composed with the policy engine, and (ii)

38

SelfDN 2018, August 24, 2018, Budapest, Hungary Demoulin et al.

Entity type Entity set Workload class Rule Action Enforcement Point

REQUEST * Slow attacks Flow Lifetime > ϵ ISOLATE (remote) PACKET ENTERS A QUEUE

REQUEST * CPU asym Packet CPU Time > ϵ ISOLATE (remote or local) PACKET LEAVES THE SYSTEM

COMPONENT * HTTP Flash crowd Arrival Rate > ϵ CLONE CONTROLLER PARSE STATS

COMPONENT * Normal Queue Length > 0 CLONE CONTROLLER PARSE STATS

Table 2: An example of Policy Table. Rules’ predicate can be drawn from domain expertise are learned in a supervised fashion.
Entries are systematically enforced at runtime. Actions are automatically applied when a predicate holds.

Figure 2: Legitimate traffic latency with and without traffic isolation. Attack period is delimited with a red background. Without traffic isola-
tion, the platform deploys up to 24 more XML component instances to withstand the load.

how well the system can maintain quality of service for legitimate

clients under attacks, including attacks unseen in the policy training
set, using the learned traffic isolation policy. For comparison, we

also evaluated the performance of the system under a default policy

where the system clones components as and when their resource

demands increase, without performing any traffic isolation.

Scenario: A user wants to fill in a rule in the policy table to

perform isolation of suspicious traffic. Her application (a simple

API service she uses as the front-end for her business backend)

has previously been under some asymmetric CPU bound attacks,

the exact type of which she has not been able to precisely deter-

mine. She identifies two attack periods by analyzing her logs, and

queries the policy composition engine for the single best traffic

feature over which to perform isolation. We analyzed the query’s

results produced by the learning engine, as well as the effects on

the application with and without the learned rule enabled in the

controller.

Application: In all the experiments, we deployed a simple de-

composed web server stack. The webserver is made of six compo-

nents: an I/O component, which is responsible for handling events

on the webserver’s socket; a read component, which is responsible

for reading raw bytes from the socket, performing TLS handshake,

deciphering the message, and handing the plain text request to the

HTTP component. The HTTP component parses requests headers,

and forwards the request to either a RegEX component, responsi-

ble for parsing a regular expression with the PCRE engine, or an

XML component, responsible for parsing an XML retrieved from

the HTML payload. Finally, a write component is responsible for

encrypting the HTTP response and sending it to the client.

Training traffic description: The actual attacks the user iden-
tified are an occurrence of TLS renegotiation attacks [8] and one

of Redos [6] (regular expression attack). During the TLS renegotia-

tion attack, the attacker repetitively triggers TLS handshakes on a

single connection. In our setup, a single handshake required approx-

imately 2.1 milliseconds of computation time (we used a 2048-bits

RSA key), and every malicious request triggers 50 renegotiations

before closing. We sent the attack traffic using a house-made C

HTTPS client for 5 minutes at a rate of 25 requests per second. The

Redos attack exploits a flaw in the PCRE engine by sending a specif-

ically crafted regular expression to the parser. In our setup, each

request required approximately 100 milliseconds of computation

time. We sent the Redos traffic at a rate of 25 requests per second for

5 minutes, using an open-source distributed benchmarker named

Tsung [9]. During both attacks, as well as 5 minutes before and

after each attack, the application receives legitimate traffic, which

was generated by Tsung under an exponential distribution with

a mean of 2000 requests per second, split over two client nodes.

Overall, the dataset spans a period of about 20 minutes.

Testbed: Our testbed is a cluster of 10 computers connected via

a 10 Gbps switch in a star topology. Eight of the computers were

used for processing the traffic; each of them has 8 1.80 GHz cores

(with hyperthreading and DVFS disabled), 64 GB of memory, and

runs Linux kernel 4.4.0-62. The remaining two, which we used as

traffic generators, have 24 2.4 GHz cores and 64 GB of memory

each, and both run Linux kernel 4.13.5-200.

Training set: We configured the platform to report monitoring

data for all 6 components of the application every second. In ad-

dition, it also reported traffic information and runtime node-wide

statistics. As explained in Section 2, the data for each reporting

39

Automated Detection and Mitigation of App-level Asym. DoS Attacks SelfDN 2018, August 24, 2018, Budapest, Hungary

PKT_CPUTIME <= 0.03
entropy = 0.994
samples = 1096

value = [599, 497]

entropy = 0.021
samples = 492

value = [1, 491]

True

entropy = 0.08
samples = 604

value = [598, 6]

False

Figure 3: Training output of the decision tree

interval were distributed into a histogram which we configured

to have 5 bins (mininum, 25th percentile, median, 75th percentile,

and maximum values). The specific metrics we collected are listed

in Table 1. In total, each sample account for about 590 raw fea-

tures (6 components time 19 component features time 5 bins, and

4 request features time 5 bins), however, we usually average each

reported histogram across component types’ to reduce the volume

of data. (Note that our engine allows queries to be made over an

arbitrary set of components, and thus it is possible to consider data

at the instance granularity; however, we found that, for our setup,

this granularity was not too practical and does not provide much

additional usefulness.) For this specific experiment, as we intent

to create a policy targeting suspicious requests, we only use the

requests features.

4.1 Feature selection
We queried the learning engine with labels for “attack” and “good”,

and we requested the three best discriminant among all 75 fea-

tures, such that we can fill an entry in the policy table enforcing

packet isolation (using a mechanism described in Section 4.2) for

those flows which break the learned rule. Upon reception of the

query, the engine performed the training described in Section 3.2.

The query’s results are shown in Figures 3 and 4. For the sake of

space, we only display the first layer of the decision tree: indeed,

we found that the flow’s request CPU time, with values greater

than 30 milliseconds the demarcation for good and attack traffic,

was the single best discriminant feature, classifying with 99.36%

precision and 99.83% recall the points where the system was under

attack. Of course those values are only an encouragement, in the

sense that they are obtained from a training set and not a tangible

clue of the generalization capability of the classifier. In addition,

we do expect that more complex application will have more than

one discriminant. We evaluate how well the model generalize to a

testing set in the next section.

4.2 Online policy enforcement
We now evaluate the quality of service provided to the legitimate

traffic with and without the enforcement of the learned policy.

Specifically, we attacked the applicationwith a Billion Laughs attack

Figure 4: Training confusion matrix for the decision tree

[3], generated by Tsung; this attack was not seen yet by the learning
engine, and thus not present in the policy training dataset.

Traffic isolation: The isolation policy is evaluated by local run-

times whenever a packet is enqueued to a component, or leaves the

system. When the rule is verified, the runtime flags the origin IP of

the packet as suspicious for a configurable amount of time (10 sec-

onds in our experiment), and spawns a quarantine worker thread

on which it deploys the full library of functions in the application
1
,

and updates its routing module such that only the suspicious traffic

is redirected to that component.

Default cloning policy: This default heuristic, introduced in

section 2.2, monitors the minimum buffer length of each component

from the centralized controller, and if this value exceeds 0, greedily

picks an unoccupied core on which to deploy a new instance of the

overloaded component.

Experimental results: For both experiments, we started the

platform with 3 machines, each of which is instantiated with one

I/O, 4 read, 1 HTTP, 3 RegEX, 3 XML, and 1 write components. We

ran good traffic only for 2.5 minutes, then we started the attack

which lasted for 5 minutes. We left good traffic running for 2.5

additional minutes after the attack. Figure 2 shows the latency and

success rate of the good clients in with the isolation policy and

with the cloning policy. The bottom chart displays the number of

components deployed using the default cloning without the traffic

isolation policy (up to 24 new XML components on the three free

servers in our cluster, one per available CPU). When the policy was

enabled, no cloning happens and the platform isolated traffic based

on the learned rule.

The results show that under default cloning, the additional re-

source deployed to handle the increase in traffic load can help to

reduce the latency (from more than a second latency to hundreds

of milliseconds). However, the latency only began to reduce after

one minute into the attack, and it still remained at hundreds of

milliseconds during the rest of the attack duration.

In contrast, when isolation was enabled, because offending traffic

was confined to quarantine components, good clients suffered only

a brief increase in latency (up to about 200 milliseconds), and this

happened only at the beginning of the attack period. The latency

returned to the same latency as when there is no attack (about two

1
We are working on optimizing this such that only the target component is replicated.

40

SelfDN 2018, August 24, 2018, Budapest, Hungary Demoulin et al.

milliseconds) as soon as within in a couple of seconds. We observe

no false positive event where one of the two legitimate client’s IP

is isolated. The above results demonstrate that the traffic isolation

enabled by the learned rule is highly effective in isolating attacks,

even for unseen attacks, and that it can maintain desirable quality

of service for legitimate users.

5 RELATEDWORK
Previous work on application-layer DoS attacks relies mostly on

the processing and analyzing of traffic generated by volumetric

attacks, by comparing the entropy of offending and legitimate traffic

[17, 24], using flow sampling [13] or sketch-based solutions [22].

While these techniques work well for volumetric attacks, they have

been known to decrease in their effectiveness when the amount of

attack traffic is low [13], such as asymmetric attacks.

A popular defense against asymmetric attacks is based on in-

terventions from the end-users, either by solving a CAPTCHA, or

by having its clients computing a computational puzzle. This tech-

nique has known limitations [10]. Our platform takes advantage of

the fact that asymmetric application-level DoS attacks often target

a vulnerability in a single component of the system, thus making it

possible to apply precise mitigation policy at the component level,

adding to the usual traffic information the enormous amount of

system statistics collected at runtime, which are ultimately the clos-

est representatives of the resource under attack. Recent work have

also shown good results for mitigating low rate DoS attacks using

Probabilistic Finite Automata [11], but using only a small amount

of features, and at the cost of heavy kernel instrumentation. Our

platform reduces instrumentation needs by providing a general

decomposed programming framework. In addition, it can perform

characterization for a potentially large range of workloads.

Lastly, we note that our work can be integrated with distributed

monitoring and tracing platforms such as Retro [16] and Dapper

[21]. Once an attack is detected, those advanced tracing tools can

allow for a finer profiling of the vulnerable execution path at low

cost, as well as precise forensic to identify the component under

attack.

6 DISCUSSION
This paper is one step towards our longer term vision of having

self-driving data centers that can identify and mitigate security

attacks using machine-learning techniques. We view the advent of

microservices and component-based cloud application stack as an

important piece of the puzzle.

In the immediate future, we are working on augmenting the

number of attack type (targeting other resources than CPU) to

study how one can compose policies mitigating the exhaustion of

multiple resource type — potentially interleaved — while distin-

guishing malicious traffic from legitimate flash crowds. In addition,

we are working on enhancing the scalability of our platform, for

example the ability to store large volumes of monitored data in

high-performance data stores. As we collect more data, we also plan

to use summarization techniques, e.g. the use of LSTM (Long Short-

Term Memory) to summarize temporal time series data. We also

plan to scale up our learning agent, through the use of distributed

controllers and distributed learning agents.

We also plan to incorporate more sophisticated learning tech-

niques, e.g. the use of reinforcement learning to reward good miti-

gation techniques, while deemphasizing poor ones. In the longer

term, we plan to explore mitigation techniques beyond traffic iso-

lation. For example, rather than isolating the traffic in functional

components, one could redirect the traffic to specific traffic analysis

functions, which could perform more complex analysis. This is

particularly useful when application developer are aware of hard-

to-hide vulnerabilities in their protocol, and want to verify where

they are victim of an attack or if the workload is circumstantial. In

the same vein, with the intention to save space and compute time, it

would be a good idea to start monitoring more advanced statistics

only when an alert has been raised, or a flow flagged suspicious.

7 ACKNOWLEDGEMENT
This material is based upon work supported in parts by NSF Grants

CNS-1703936 and CNS-1563873, and by the the Defense Advanced

Research Projects Agency (DARPA) under Contracts No. HR0011-

16-C-0056, No. HR001117C0047 and No. HR0011-16-C0061. Any

opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of DARPA or NSF.

REFERENCES
[1] AWS lambda. https://aws.amazon.com/lambda.

[2] CloudFlare Workers. https://developers.cloudflare.com/workers/about/.

[3] Common vulnerabilities and exposures (see cve-2003-1564). http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2003-1564.

[4] Google Cloud Functions. https://cloud.google.com/functions.

[5] OpenWhisk. https://developer.ibm.com/openwhisk.

[6] Regular expression denial of service - ReDoS. https://www.owasp.org/index.php/

Regular_expression_Denial_of_Service_-_ReDoS.

[7] Spark Streaming. https://spark.apache.org/streaming/.

[8] SSL renegotiation DoS. https://www.ietf.org/mail-archive/web/tls/current/

msg07553.html.

[9] Tsung. http://tsung.erlang-projects.org/.

[10] Beitollahi, H., and Deconinck, G. Analyzing well-known countermeasures

against distributed denial of service attacks. Computer Communications 35, 11
(2012), 1312–1332.

[11] Elsabagh, M., Fleck, D., Stavrou, A., Kaplan, M., and Bowen, T. Practical

and accurate runtime application protection against dos attacks. In International
Symposium on Research in Attacks, Intrusions, and Defenses (2017), Springer,
pp. 450–471.

[12] Idhammad, M., Afdel, K., and Belouch, M. Semi-supervised machine learning

approach for ddos detection. Applied Intelligence (2018), 1–16.
[13] Jazi, H. H., Gonzalez, H., Stakhanova, N., and Ghorbani, A. A. Detecting http-

based application layer dos attacks on web servers in the presence of sampling.

Computer Networks 121 (2017), 25–36.
[14] Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., and Recht, B. Occupy the

cloud: distributed computing for the 99%. In Proceedings of the 2017 Symposium
on Cloud Computing (2017), ACM, pp. 445–451.

[15] Krupp, J., Backes, M., and Rossow, C. Identifying the scan and attack infras-

tructures behind amplification DDoS attacks. In Proc. CCS (2016).
[16] Mace, J., Bodik, P., Fonseca, R., and Musuvathi, M. Retro: Targeted resource

management in multi-tenant distributed systems. In NSDI (2015), pp. 589–603.
[17] Ni, T., Gu, X., Wang, H., and Li, Y. Real-time detection of application-layer ddos

attack using time series analysis. Journal of Control Science and Engineering 2013
(2013), 4.

[18] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research
12 (2011), 2825–2830.

[19] Pescatore, J. DDoS attacks advancing and enduring: A SANS survey. Tech. rep.,

SANS Institute, 2014.

[20] Ryba, F. J., Orlinski, M., Wählisch, M., Rossow, C., and Schmidt, T. C. Am-

plification and DRDoS attack defense – a survey and new perspectives. CoRR
abs/1505.07892 (2015).

41

https://aws.amazon.com/lambda
https://developers.cloudflare.com/workers/about/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cloud.google.com/functions
https://developer.ibm.com/openwhisk
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://spark.apache.org/streaming/
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
https://www.ietf.org/mail-archive/web/tls/current/msg07553.html
http://tsung.erlang-projects.org/

Automated Detection and Mitigation of App-level Asym. DoS Attacks SelfDN 2018, August 24, 2018, Budapest, Hungary

[21] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M.,

Beaver, D., Jaspan, S., and Shanbhag, C. Dapper, a large-scale distributed

systems tracing infrastructure. Tech. rep., Technical report, Google, Inc, 2010.

[22] Wang, C., Miu, T. T., Luo, X., and Wang, J. Skyshield: A sketch-based defense

system against application layer ddos attacks. IEEE Transactions on Information
Forensics and Security 13, 3 (2018), 559–573.

[23] Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y., and Tang, F. Discriminating ddos

attacks from flash crowds using flow correlation coefficient. IEEE Transactions
on Parallel and Distributed Systems 23, 6 (2012), 1073–1080.

[24] Zhou, W., Jia, W., Wen, S., Xiang, Y., and Zhou, W. Detection and defense

of application-layer ddos attacks in backbone web traffic. Future Generation
Computer Systems 38 (2014), 36–46.

42

	Abstract
	1 Introduction
	2 Design
	2.1 Execution model
	2.2 Automated Mitigation
	2.3 Supervised rule learning

	3 Policy composition engine
	3.1 Decision Tree
	3.2 Feature selection

	4 Evaluation
	4.1 Feature selection
	4.2 Online policy enforcement

	5 Related work
	6 Discussion
	7 Acknowledgement
	References

